Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Grain orientation boosts thermoelectric performance

The peak dimensionless thermoelectric figure-of-merit (ZT) of Bi2Te3-based n-type single crystals is about 0.85 in the ab plane at room temperature, which has not been improved over the last 50 years due to the high thermal conductivity of 1.65 W m−1 K−1 even though the power factor is 47 × 10−4 W m−1 K−2.  Credit Nano Letters
The peak dimensionless thermoelectric figure-of-merit (ZT) of Bi2Te3-based n-type single crystals is about 0.85 in the ab plane at room temperature, which has not been improved over the last 50 years due to the high thermal conductivity of 1.65 W m−1 K−1 even though the power factor is 47 × 10−4 W m−1 K−2. Credit Nano Letters

Abstract:
Thermoelectric materials promise everything from clean power for cars to clean power from the sun, but making these materials widely useful has been a challenge.

Grain orientation boosts thermoelectric performance

Chestnut Hill, MA | Posted on January 23rd, 2011

Now researchers from Boston College, MIT and GMZ Energy have developed an inexpensive, simple mechanical process for achieving a major increase in the efficiency of a common thermoelectric material: bismuth telluride selenide (BiTeSe), which has been used in commercial devices since the 1950s. "Power generation applications for thermoelectrics are not big now because the materials aren't good enough," said MIT professor Gang Chen. He believes their findings could pave the way for a new generation of products - from semiconductors and air conditioners to car exhaust systems and solar power technology - that run cleaner.

Xiao Yan and his colleagues from BC, MIT and GMZ Energy achieved a 22% improvement in peak thermoelectric figure of merit (ZT - see 1 below) from 0.85 to 1.04 at 125 degrees C in Bi2Te2.7Se0.3 by repressing the as-pressed samples. The main improvement is the large increase of electrical conductivity with only small increase of thermal conductivity and similar Seebeck coefficient. "We want to attain the single-crystal-like high power factor (see 2 below) by preparing preferential grain orientation while maintaining low thermal conductivity by nanocomposite approach," said Boston College professor Zhifeng Ren.

An innovative mechanical process technique was employed by Xiao Yan and his co-workers from BC, MIT and GMZ Energy. As-pressed samples were initially obtained by ball milling the mixture of individual element materials into alloyed BiTeSe nanopowders and then hot pressing the powder into bulk forms with nano constituents. Then as-pressed bulks were pressed again at elevated temperatures in a bigger diameter die to obtain re-pressed bulk samples. "During repressing process, lateral flow takes place, which helps to orient the grains and thus improve the power factor," explained Ren and Chen.

This work was published in Nano Letters, pubs.acs.org/doi/abs/10.1021/nl101156v

(1) ZT is a measure of the thermoelectric performance of a material

(2) Power factor is defined as a product of squared Seebeck coefficient and electrical conductivity.

####

For more information, please click here

Contacts:
Ed Hayward
Boston College Office of Public Affairs
617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Environment

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project