Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Bold Medicine, Golden Innovation

Xenia Kachur, a graduate student in the Biomedical Engineering Graduate Interdisciplinary Program at the University of Arizona, is working on methods to deliver chemotherapeutic drugs to cancer tissues without harming healthy body cells. Photo credit: Beatriz Verdugo/UANews
Xenia Kachur, a graduate student in the Biomedical Engineering Graduate Interdisciplinary Program at the University of Arizona, is working on methods to deliver chemotherapeutic drugs to cancer tissues without harming healthy body cells. Photo credit: Beatriz Verdugo/UANews

Abstract:
One day, building on the bold work being done by Marek Romanowski and his students, those suffering cancer may be able to receive effective chemotherapy treatment, confident that they will not have to endure the side effects. To a patient facing such treatments, such confidence will be as good as gold.

Bold Medicine, Golden Innovation

Tucson, AZ | Posted on January 31st, 2011

The upside of chemotherapy is that it attacks cancer cells and kills them. The downside - and a steep downside it is - is that it is composed of highly toxic compounds that attack other cells of the body, too, resulting in any number of harmful side effects, from anemia to hair loss to nausea and vomiting.

The question concerning researchers is how do we deliver chemotherapy drugs to the harmful cells and leave the healthy cells alone?

Marek Romanowski, Ph.D. associate professor of biomedical engineering at the UA College of Engineering and member of the BIO5 Institute and the Arizona Cancer Center, and his team might be on to an answer. In a paper authored by primary investigator Sarah Leung, along with Xenia Kachur, Michael Bobnick and Dr. Romanowski, Leung describes an idea that is literally golden.

Chemotherapy drugs are sometimes delivered via microscopic capsules called liposomes made of organic lipids already present in cells. These lipid casings, used in a technique called liposomal therapy, do two things. First, they allow the drugs to more effectively penetrate into cancer cells. At the same time, they keep the body's immune system from eliminating the drugs before they can do their jobs.

The problem is that, as the liposomes degrade, the drugs are potentially released indiscriminately throughout the body. So, how can we force these capsules to release their contents only around those unhealthy tumor cells?

Romanowski and his team are experimenting by coating liposomes with gold, an element which has the property of converting infrared light into heat.

"The heat causes the liposome to become leaky, and then whatever's really concentrated inside can diffuse out through the liposome," says Kachur, a third-year graduate student in the Biomedical Engineering Graduate Interdisciplinary Program.

The idea works because infrared light has the ability to penetrate deeply through the body.

"Once you know where the tumors are, you can go ahead and point your light source toward those areas. Whatever else is left will leave the body or may be slowly released, but not to as high or as toxic of levels as it would be if you just injected the drug systemically," said Leung, a fourth-year graduate student.

One last bonus to the proposed innovation is that the kidneys can naturally filter and eliminate the biodegraded gold nanostructures from the body.

If successful, the gold-coated liposomes being developed at the UA could offer a new way to target delivery of drugs to cancerous regions of the body, non-invasively trigger the drugs' release using infrared light, and provide a way for the body to naturally eliminate the toxic byproducts.

One day, building on the bold work being done by Marek Romanowski and his students, those suffering cancer may be able to receive effective chemotherapy treatment, confident that they will not have to endure the side effects. To a patient facing such treatments, such confidence will be as good as gold.

The paper, "Wavelength-selective Light-induced Release from Plasmon Resonant Liposomes," will appear in the journal Advanced Functional Materials. Learn more about the Department of Biomedical Engineering at bme.engr.arizona.edu/.

####

For more information, please click here

Copyright © University of Arizona

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project