Home > Press > Early tests find nanoshell therapy effective against brain cancer
Gold Nanoshell. Credit Rice University. |
Abstract:
Rice bioengineers, Baylor College of Medicine and Texas Children's physician-scientists zap tumors with light-activated nanoparticles
Rice University bioengineers and physician-scientists at Baylor College of Medicine and Texas Children's Hospital have successfully destroyed tumors of human brain cancer cells in the first animal tests of a minimally invasive treatment that zaps glioma tumors with heat. The tests involved nanoshells, light-activated nanoparticles that are designed to destroy tumors with heat and avoid the unwanted side effects of drug and radiation therapies.
The results of the new study are available online in the Journal of Neuro-Oncology. The researchers reported that more than half of the animals that received the nanoshell treatment for glioma tumors had no signs of cancer more than three months after treatment.
"This first round of in vivo animal tests suggests that photothermal therapy with nanoshells may one day be a viable option for glioma patients," said study co-author Jennifer West, the Isabel C. Cameron Professor of Bioengineering at Rice and chair of Rice's Department of Bioengineering. West cautioned that follow-up work in the laboratory is needed before any human testing of the therapy can begin. She said human clinical trials of nanoshell phototherapy for glioma are likely at least a year away.
Glioma is among the most aggressive and difficult-to-treat of all brain cancers. Fewer than five percent of glioma patients survive beyond five years. The disease is particularly difficult to treat because glioma tumors are often highly invasive and inoperable.
Study co-authors include pediatric oncologist Susan Blaney, deputy director of Texas Children's Cancer Center and Baylor College of Medicine professor and vice chair for research in the department of pediatrics, and Rebekah Drezek, professor in bioengineering at Rice. West, Blaney, Drezek and colleagues tested mice with abdominal tumors of human glioma cells. The researchers injected the mice with nanoshells and waited 24 hours for the nanoparticles to accumulate in the tumors. A laser of near-infrared light -- which is harmless to healthy tissue -- was shined at the tumor for three minutes. The nanoshells converted the laser light into tumor-killing heat. All seven animals that received the nanoshell treatment responded, but cancer returned in three. The other four remained cancer-free 90 days after treatment.
"The results of this study are encouraging, and we are cautiously optimistic that this process may bring us closer to finding a cure for glioma," said Blaney, also associate director for clinical research at Baylor College of Medicine's Dan L. Duncan Cancer Center and co-director of The Institute for Clinical and Translational Research. "This is very exciting, especially given the poor prognosis of the disease and the importance of finding brain tumor treatment alternatives that have minimal side effects."
Gold nanoshells, which were invented by Rice researcher Naomi Halas in the mid-1990s, are smaller than red blood cells. Nanoshells are like tiny malted milk balls that are coated with gold rather than chocolate. Their core is nonconducting, and by varying the size of the core and thickness of the shell, researchers can tune them to respond to different wavelengths of light.
Houston-based biomedical firm Nanospectra Biosciences, which holds the license for medical use of Rice's nanoshell technology, began the first human clinical trial of nanoshell phototherapy in 2008.
West, a co-founder and director of Nanospectra Biosciences, said the new glioma study is part of a larger ongoing effort within the Texas Medical Center to adapt nanoshell phototherapy for use against a variety of cancers. Researchers at Rice, Texas Children's Hospital, M.D. Anderson Cancer Center, Baylor College of Medicine and other institutions are working to develop nanoshell-based treatments for prostate cancer and pancreatic cancer.
The glioma study was funded by the National Science Foundation, the National Institutes of Health and Hope Street Kids.
The study is available at: www.springerlink.com/content/j3n862x12l246708/
####
About Rice University
Located in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. A Tier One research university known for its "unconventional wisdom," Rice has schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and offers its 3,485 undergraduates and 2,275 graduate students a wide range of majors. Rice has the sixth-largest endowment per student among American private research universities and is rated No. 4 for “best value” among private universities by Kiplinger’s Personal Finance. Its undergraduate student-to-faculty ratio is less than 6-to-1. With a residential college system that builds close-knit and diverse communities and collaborative culture, Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review.
For more information, please click here
Contacts:
David Ruth
713-348-6327
Jade Boyd
713-348-6778
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||