Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Gene fuelled transporter causes breast cancer cells to self-destruct

Dr Helen McCarthy
Dr Helen McCarthy

Abstract:
Scientists at Queen's have shown that they can deliver a gene directly into breast cancer cells causing them to self-destruct, using an innovative, miniscule gene transport system, according to research published today (28 February) in the International Journal of Pharmaceutics.

Gene fuelled transporter causes breast cancer cells to self-destruct

Belfast, Northern Ireland | Posted on February 27th, 2011

Using a transport system called a Designer Biomimetic Vector (DBV), Dr Helen McCarthy, from Queen's School of Pharmacy, funded by Breast Cancer Campaign, packaged a gene into a nanoparticle 400 times smaller than the width of a human hair, allowing it to be delivered straight into breast cancer cells in the laboratory.

The gene called iNOS, is targeted specifically to breast cancer cells using the DBV where it forces the cells to produce poisonous nitric oxide; either killing the cells outright or making them more vulnerable to being destroyed by chemotherapy and radiotherapy. As this approach leaves normal healthy breast cells unaffected, this would overcome many of the toxic side effects of current treatments.

Further investigation is needed but it could be trialled in patients in as little as five years. Dr McCarthy's next step is to turn the nanoparticles into a dried powder that could be easily transported and reconstituted before being given to patients.

Dr McCarthy said: "A major stumbling block to using gene therapy in the past has been the lack of an effective delivery system. Combining the Designer Biomimetic Vector with the iNOS gene has proved successful in killing breast cancer cells in the laboratory. In the long term, I see this being used to treat people with metastatic breast cancer that has spread to the bones, ideally administered before radiotherapy and chemotherapy.

Dr Lisa Wilde, Research Information Senior Manager, Breast Cancer Campaign said: "Gene therapy could potentially be an exciting avenue for treating breast cancer. Although at an early stage, Dr McCarthy's laboratory research shows that this system for delivering toxic genes to tumour cells holds great promise and we look forward to seeing how it is translated into patients."

####

For more information, please click here

Contacts:
Media enquiries to Claire Learner, Media Relations Officer
Breast Cancer Campaign
00 44 (0)20 7749 3705

M: 07736 313698

or
Queen’s University Communications Office
00 44 (0)28 9097 3087/3091

Copyright © Queen's University Belfast

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project