Home > Press > Improved Electrical Conductivity in Polymeric Composites
Percolating network of rods and spheres |
Abstract:
Physicists at the University of Luxembourg have developed a new method to improve the electrical conductivity of polymeric composites. Polymeric composites consist of two or more materials and are used for example to shield off electrostatics in airplanes. By introducing additives into polymeric composites, favourable properties can be achieved. For instance, they develop favourable electrical properties when reinforced with carbon nanotubes. Such composites are used to make flat-panel displays and solar cells more efficient.
The researchers in Luxembourg, in cooperation with scientists from the Netherlands, have studied the electrical percolation of carbon nanotubes in a polymer matrix and shown the percolation threshold - the point at which the polymer composite becomes conductive - can be considerably lowered if small quantities of a conductive polymer latex are added. The simulations were done in Luxembourg, while the experiments took place at Eindhoven University.
"In this project, the idea is to use as little as possible carbon nanotubes and still benefit from their favourable properties", says the project leader at the University of Luxembourg, Prof. Tania Schilling, "we have discovered that, by adding a second component, we could make use of the resulting interactions to reach our goal." By mixing finely dispersed particles, so-called colloidal particles, of differing shapes and sizes in the medium, system-spanning networks form: the prerequisite for electrically conductive composites.
The recent finding of the materials scientists of the University of Luxembourg was published in the peer-reviewed, scientific journal „Nature Nanotechnology". This finding is a result of a cooperation of scientists at the University of Luxembourg, the Technische Universiteit Eindhoven and the Dutch Polymer Institute.
Full bibliographic information
Controlling electrical percolation in multicomponent carbon nanotube dispersions
by Andriy V. Kyrylyuk,Marie Claire Hermant, Tanja Schilling, Bert Klumperman, Cor E. Koning & Paul van der Schoot
####
For more information, please click here
Contacts:
Tanja Schilling
University of Luxembourg
+352 46 66 44 6970
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Flexible Electronics
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||