Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticles help scientists harvest light with solar fuels

Abstract:
The humble alga, hated by boaters and pool owners, may someday help provide us with the raw machinery to power our appliances.

Nanoparticles help scientists harvest light with solar fuels

Argonne, IL | Posted on May 19th, 2011

A group of scientists at the U.S. Department of Energy's Argonne National Laboratory, led by chemist Lisa Utschig, has linked platinum nanoparticles with algae proteins, commandeering photosynthesis to produce hydrogen instead. The system produces hydrogen at a rate five times greater than the previous record-setting method.

"If you are considering the question 'How do we get energy from the sun,' you always come back to photosynthesis," Utschig said. "Photosynthesis does it best. It's been engineered over millions of years."

Utschig and Tiede are part of Argonne's Photosynthesis Group, which has worked for fifty years to understand photosynthesis—one of the most mysterious and wonderful chemical processes in the world. Photosynthesis built a green Earth out of the bare, meteor-blistered planet which had sat empty for a billion years; it tipped the composition of the atmosphere towards oxygen, allowing all kinds of life to blossom, including us.

The chemistry group is part of a larger effort to develop efficient ways to produce what are termed solar fuels. Most people think of solar panels when they think of solar energy, but the energy that solar panels generate has to be used right away—they directly create electricity, which can't be stored easily.

The alternative is solar fuels, which pull energy from the sun to create fuel that can be stored for later, such as hydrogen. Hydrogen, a promising fuel in the effort to reduce carbon dioxide emissions, is appealingly clean: when it's burned as fuel, water is the byproduct. But we have yet to discover a low-cost way to manufacture large amounts of hydrogen.

"Basically, we've been reverse-engineering photosynthesis," said Argonne chemist David Tiede, who co-authored the paper. "If we understand how Nature does it, we can tweak the process to produce hydrogen."

Most solar fuel efforts focus on a type of protein complex called Photosystem I, or PSI, which is the first half of the photosynthetic duo found in all green plants.

When light strikes the PSI complex, it momentarily knocks an electron into an "excited" state. The goal is to separate this electron from its home atom—leaving behind a "hole" of positive charge—and channel it to an artificial catalyst to make hydrogen. But the electron only remains excited for the tiniest fraction of a second; the catalyst needs to grab it during this tiny window.

With co-author Nada Dimitrijevic, the team designed platinum nanoparticle catalysts. These catalysts have a size and surface chemistry that allows them to stick to PSI molecules at the point where the light-generated electrons accumulate. When the modified platinum nanoparticles and PSI are mixed in water, the two link together.

"The platinum nanoparticles have the same size and surface charge as the molecule that PSI would bind to naturally," Tiede said.

Because the study design used platinum as a catalyst, which is too expensive to be cost-effective, the research serves as proof-of-concept. Further studies hope to improve the method's efficiency, reliability and economics.

"The next step we'll take is experimenting with non-platinum catalysts," Utschig said. "Hopefully we can find a catalyst that can be made with a cheaper metal, which would make the process much more attractive on a large scale."

The paper, "Photocatalytic Hydrogen Production from Noncovalent Biohybrid Photosystem I/Pt Nanoparticle Complexes," was published in the Journal of Physical Chemistry Letters and is available online.

The research was supported by the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy's Office of Basic Energy Sciences.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Louise Lerner
630/252-5526

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project