Home > Press > RUSNANO Enters $300 Million Deal with Crocus Technology to Build Advanced 90nm and 65nm MRAM Manufacturing Facility in Russia
Abstract:
Crocus Technology, a leading developer of MRAM technology, today announced that they have closed an agreement to create an MRAM manufacturing company, with a combined investment totaling $300 million. Under the terms of the agreement, Crocus and RUSNANO will form Crocus Nano Electronics (CNE), to build an advanced MRAM facility in Russia, capable of manufacturing medium to high density MRAM products based on Crocus' Thermally Assisted SwitchingTM (TAS) MRAM technology at 90nm and 65nm lithographies.
RUSNANO's total investment commitment to the deal is 3.8 billion rubles (approximately $140 million). Approximately $125 million will be invested in the first round for setting up CNE's MRAM facility in Russia. In addition, RUSNANO along with Crocus' existing investors CDC Innovation, FCPR Ventech Capital, IDInvest Partners, NanoDimension, and Sofinnova Venture Partners will make an equity investment of $55 million into Crocus. An additional $120 million is slated to be deployed in subsequent years to increase production capability of the MRAM facility. Further investment to support upgrades to 45nm and finer lithographic processing is also incorporated into this agreement.
"RUSNANO's investment reflects their commitment to breaking down international divides to stimulate the global nano-technology industry," said Bertrand F. Cambou, executive chairman of Crocus Technology. "We are pleased that RUSNANO has chosen to invest in Crocus's technology and is actively participating in building a unique Russian-based manufacturing facility that will serve a global market."
"We selected Crocus because we believe their technology is best-in-class and promises to bring differentiated MRAM products to market", said Anatoly Chubais, CEO and chairman of the Executive Board of RUSNANO. "Crocus' executive team has a rich history of cooperation with Russian researchers. CNE and Crocus will be important elements of RUSNANO's strategy for establishing the microelectronics industry in Russia based on the world's best technology."
The Russia-based CNE facility will utilize Crocus' technology to create the first dedicated magnetic memory wafer fab in the world capable of high volume manufacturing of MRAM devices on 300mm wafers with 90nm and 65nm feature sizes. The factory will be designed to add MRAM specific processing layers to standard CMOS foundry wafers. The production facility is scheduled to be in operation within two years and will be capable of producing up to 500 wafers per week. Expanded capacity of up to 1000 wafers per week is anticipated under a second phase of investment. In addition, CNE and Crocus plan to create a Learning Center and a Development Ecosystem for advanced memory design and production in the Russian Federation. Crocus will invest over $5 million initially into Russian research organizations to develop advanced manufacturing solutions. This research investment will expand over time to include system-on-chip (SOC) capabilities for secure memory, network processing, and advanced computing.
CNE's 90nm & 65nm manufacturing capability will enable Crocus to offer much higher density MRAM devices than currently available. Products manufactured by CNE will be marketed and sold worldwide by Crocus, excluding Russia and other former CIS states, while CNE will market directly within the former CIS. Crocus products sourced by CNE will address key markets such as storage, mobile communications, networking and cloud computing. In addition to general purpose memory applications, Crocus' TAS MRAM technology will serve specific uses in smartcards, network processing, biometric authentication, near-field communications (NFC), and secure memory. The unlimited endurance, non-volatility, and fast read/write performance of Crocus' MRAM technology are extremely valuable for many of these applications. Crocus' technology will be available for use in both standalone and embedded applications, addressing a total market opportunity of more than $40 billion per year.
The CNE joint venture will be complementary to Crocus' previously announced wafer foundry partnership with TowerJazz, which has successfully entered the final qualification stage, with production ramp of 130nm MRAM devices planned for late 2011. In addition, Crocus will continue to work with SVTC, its process integration R&D partner in San Jose, CA, to develop key manufacturing process steps to be used by CNE.
About MRAM and TAS
MRAM (magnetoresistive random access memory) is a new type of memory technology which combines traditional semiconductor and advanced magnetic technologies, resulting in memory chips that offer the benefits of well-established semiconductor memories, such as DRAM, SRAM, and Flash, without their key limitations. In contrast to conventional memory chip technologies, MRAM data is not stored as electric charge or voltage, but instead by magnetic polarization of storage elements. Crocus' MRAM chips offer the high speed read/write performance, unlimited write cycles, and low voltage operation of DRAM and SRAM, along with the non-volatility and low cost of Flash. TASTM (Thermally Assisted Switching) is a patented Crocus innovation for manufacturing advanced MRAMs, that incorporates unique temperature sensitive magnetic materials and structures for providing scalable and stable high-density memory.
####
About RUSNANO
RUSNANO’s mission is to develop the Russian nanotechnology industry through co-investment in nanotechnology projects with substantial economic potential or social benefit. RUSNANO was established in March 2011 as an open joint-stock company through the reorganization of state corporation Russian Corporation of Nanotechnologies, which was founded in 2007. With this reorganization, the establishment of nanotechnology infrastructure and training of nanotechnology specialists, which was formerly conducted by the Russian Corporation of Nanotechnologies, is now entrusted to the newly created non-commercial Fund for Infrastructure and Educational Programs. The government of the Russian Federation owns 100 percent of the shares in RUSNANO.
Crocus Technology is a leading developer of magnetoresistive random access memory (MRAM) technology for dense, non-volatile, high-speed, scalable chip solutions for general and special purpose applications. The company’s MRAM innovation originated in the Grenoble-based Spintec laboratory, a world-leading R&D center in Spintronics, affiliated with French national laboratories CEA and CNRS. The company will offer discrete, high density MRAM chips that target a wide variety of telecommunication, networking, storage, computing and handheld applications. The company also licenses its technology for both standalone and embedded chip applications. Crocus’ MRAM technology is covered by a comprehensive patent portfolio.
For more information, please visit www.crocustechnology.com.
For more information, please click here
Contacts:
10A Prospekt 60-letia Oktyabrya
Moscow, Russia
117036
P: +7 495 988 5388
F: +7 495 988 5399
Copyright © RUSNANO
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Openings/New facilities/Groundbreaking/Expansion
OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022
GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021
Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||