Home > News > Enhanced photoelectrochemical hydrogen production with swift heavy ion irradiation: Metal oxide semiconductor properties have been modified to achieve split water
May 21st, 2011
Enhanced photoelectrochemical hydrogen production with swift heavy ion irradiation: Metal oxide semiconductor properties have been modified to achieve split water
Abstract:
Conventional solar cells directly convert light to electricity. Alternatively, hydrogen production through splitting water in a photoelectrochemical cell has emerged as an advanced alternative to the conventional photovoltaic cell. The key limiting challenge in the process is to design a stable semiconductor electrode that, on exposure to sunlight, creates charge carriers that in turn produce hydrogen and oxygen.
The primary requirements for suitable semiconductor photo-electrodes are sufficient solar-energy absorption, high chemical stability, and favorable band edge positions with respect to water oxidation potential. Various strategies are used to tailor semiconductor properties to suit these requirements, such as doping, dye sensitization, fabricating heterostructures of different metal oxides, developing composite nanomaterials, and nanoarchitecture design. Photoelectrochemical (PEC) performance nevertheless remains less than ideal.
Source:
spie.org
Related News Press |
News and information
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Discoveries
How cells repair DNA’s protective barrier: a pathway to address a rare genetic disorder characterized by rapid aging in children December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
Announcements
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||