Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Sharpening the plasmon nanofocus

By placing a palladium nanoparticle on the focusing tip of a gold "nanoantenna," they were able to clearly detect changes in the palladium's optical properties upon exposure to hydrogen.
By placing a palladium nanoparticle on the focusing tip of a gold "nanoantenna," they were able to clearly detect changes in the palladium's optical properties upon exposure to hydrogen.

Abstract:
Plasmonics is one of the hottest fields in technology today. Electronic surface waves called plasmons can be generated by confining electromagnetic waves shorter than half the wavelength of incident light, for example at the interface between gold nanostructures and insulating air.

Sharpening the plasmon nanofocus

Berkeley, CA | Posted on June 27th, 2011

If the oscillation frequency of the plasmons and the electromagnetic waves matches, the electromagnetic field can be "nanofocused" within a few hundred cubic nanometers. Nanofocusing can be used with dark-field microscopy to detect low concentrations of biochemical agents, single catalysis in nanoreactors, and other processes. Plasmonic sensing is especially promising for detecting flammable gases like hydrogen, where electrical sensors pose safety issues because of possible sparking.

Researchers with DOE's Lawrence Berkeley National Laboratory in collaboration with colleagues at the University of Stuttgart, Germany, reported the first experimental demonstration of nanofocusing to enhance gas sensing at the single-particle level in the journal Nature Materials. By placing a palladium nanoparticle on the focusing tip of a gold "nanoantenna," they were able to clearly detect changes in the palladium's optical properties upon exposure to hydrogen.

"Metallic nanostructures with sharp corners and edges that form a pointed tip are especially favorable for plasmonic sensing, because the field strengths of the electromagnetic waves are so strongly enhanced over such an extremely small sensing volume," says Laura Na Liu, lead author of the Nature Materials paper, now at Rice University and formerly with the research group of Paul Alivisatos, Berkeley Lab's Director, who led the work.

"We have demonstrated resonant, antenna-enhanced, single-particle hydrogen sensing in the visible region and presented a fabrication approach to the positioning of a single palladium nanoparticle in the nanofocus of a gold nanoantenna," says Alivisatos. "Our concept provides a general blueprint for amplifying plasmonic-sensing signals at the single-particle level and should pave the road for the optical observation of chemical reactions and catalytic activities in nanoreactors and for local biosensing."

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science.

For more information, please click here

Contacts:
Paul Preuss
510.486.6249

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project