Home > News > NANOTECHNOLOGY/DISEASE DETECTION: Light-scattering nanoparticles enable fast, accurate flu diagnosis - at low cost
September 17th, 2011
NANOTECHNOLOGY/DISEASE DETECTION: Light-scattering nanoparticles enable fast, accurate flu diagnosis - at low cost
Abstract:
Fast or accurate? Those are typically your choices for flu diagnosis. But a new biophotonics approach offers both speed and accuracy, and low cost as well—all things that are supremely helpful during outbreaks, especially because antiviral drugs are most effective in the early stages of disease.
Gold nanoparticles—coated with antibodies that bind to specific strains of flu virus—form the foundation of the approach. By measuring how the particles scatter laser light, University of Georgia researchers have been able to detect influenza in minutes at less than a penny per exam. "We've known for a long time that you can use antibodies to capture viruses and that nanoparticles have different traits based on their size," said Ralph Tripp, Georgia Research Alliance Eminent Scholar in Vaccine Development in the UGA College of Veterinary Medicine. "What we've done is combine the two."
Source:
bioopticsworld.com
Related News Press |
News and information
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Nanomedicine
How cells repair DNA’s protective barrier: a pathway to address a rare genetic disorder characterized by rapid aging in children December 13th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||