Home > News > A Small Revolution: In fewer than 15 years, nanomedicine has gone from fantasy to reality.
October 1st, 2011
A Small Revolution: In fewer than 15 years, nanomedicine has gone from fantasy to reality.
Abstract:
Many trace the origins of nanomedicine to a talk Richard Feynman gave at Caltech in 1959—There's Plenty of Room at the Bottom. During the lecture, Feynman proposed the idea of chemical manipulation at the atomic level and suggested that patients might one day "swallow the surgeon" in the form of tiny machines. Some 50 years later, researchers are still working to realize these dreams, but Feynman would no doubt be impressed by the list of nanomedicine applications being developed today. Nanomaterials have made their way into drug-delivery systems and diagnostics, and are quickly becoming essential basic research tools.
Of course, the reality of nanomedicine doesn't exactly fit Feynman's fantasies. The silicon chip boom of the 1980s gave chemists the technology they needed to manipulate substances at the nanoscale. But chemists weren't necessarily thinking about biomedical applications when they first started working with nanomaterials. "People were playing around with matter partly because they could," says Paul Alivisatos, a chemist at the University of California, Berkeley, and a pioneer in nanotechnology. One of the most famous discoveries of this exploratory period was the buckyball, a carbon nanoparticle with a unique geodesic-like structure that earned its discoverers the 1996 Nobel Prize in chemistry, even though it wasn't obvious at the time that there would be any real-world applications for so-called fullerenes. "I think it was a real evolution in the field when it became more clear that there could be a lot of impact in medicine," says Alivisatos. "Applications emerged in areas people hadn't anticipated." Today fullerenes are being developed as drug carriers and for other nanomedicine applications.
Source:
the-scientist.com
Related News Press |
News and information
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Nanomedicine
How cells repair DNA’s protective barrier: a pathway to address a rare genetic disorder characterized by rapid aging in children December 13th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||