Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Switching light on and off -- with just a few photons at a time

Gaeta Group
Rubidium atoms will absorb photons only if two photons of specific wavelengths arrive at the same time. This allows one stream of photons to turn another on or off.
Gaeta Group

Rubidium atoms will absorb photons only if two photons of specific wavelengths arrive at the same time. This allows one stream of photons to turn another on or off.

Abstract:
Cornell researchers have demonstrated that the passage of a light beam through an optical fiber can be controlled by just a few photons of another light beam.

Switching light on and off -- with just a few photons at a time

Ithaca, NY | Posted on November 9th, 2011

Such all-optical control is the idea behind photonics, where beams of light replace electric currents in circuits, yielding higher speed and lower power consumption. Just as a transistor can switch an electric current on or off, photonic circuits need a way for one light beam to switch another. One of the holy grails is single-photon switching, where just one photon controls the passage of another.

Researchers in the Quantum and Nonlinear Optics group of Alexander Gaeta, professor of applied and engineering physics, have come close to that goal. They report their new approach in the Nov. 4 issue of the journal Physical Review Letters.

Light consists of small packets of energy called photons. Under the right conditions, a photon can be absorbed by an atom. Gaeta's group exploited the unusual property of the element rubidium, which can absorb photons only if two photons of certain wavelengths arrive at the same time. They filled a hollow-core optical fiber with rubidium vapor and fired a continuous infrared light signal at a wavelength of 776 nanometers (nm) in one end and an intermittent "control" signal at 780.2 nm in the other.

In the narrow tube, light interacts strongly with the rubidium atoms. When the control beam is on, rubidium atoms absorb both wavelengths, and the signal is cut off; when the control is off the signal passes through.

The effect is observed with less than 20 control photons at timescales as fast as five-billionths of a second, allowing modulation at frequencies up to 50MHz, the researchers said, referring to the rate of transmission of on and off pulses of light representing digital ones and zeroes in fiber-optic communication. The technique also may have applications in quantum computing, where single photons can act as "qubits," the quantum equivalent of ones and zeroes.

The research was funded by the National Science Foundation and the Defense Advanced Research Projects Agency.

==

Graduate student Vivek Venkataraman is a writer intern for the Cornell Chronicle.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Bill Steele
(607) 255-7164


Vivek Venkataraman

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Optical computing/Photonic computing

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project