Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Zeolite synthesis made easy: Possible applications in chemistry and industry

Abstract:
Zeolites are porous materials with perfectly regular pores and high surface area that can act as molecular sieves. This property has led to important applications including the purification of air or water such as the contaminated seawater around Fukushima. Zeolites are used as catalysts - all gasoline is now made with zeolites - and for the separation and adsorption of numerous substances. While more than 200 zeolites are known today, many require expensive organic structure-directing agents ("templates") as well as high temperature and pressure for their synthesis. Synthesis of one of the most attractive, stable zeolites with very large pores, called EMT, has so far required a very expensive template, which has precluded industrial applications. Now a team of researchers including Dr. Svetlana Mintova from the Laboratoire Catalyse et Spectrochimie in Caen (France) and Prof. Thomas Bein from the Department of Chemistry of the Ludwig-Maximilians-University (LMU) in Munich has discovered a novel route for the synthesis of EMT from colloidal precursors at near ambient temperature within a short time.

Zeolite synthesis made easy: Possible applications in chemistry and industry

Munich, Germany | Posted on December 13th, 2011

The novel approach dispenses with the organic template, and produces the smallest known zeolite nanocrystals with the most open pore network, which is highly desirable because it provides very short pathways for molecules entering the crystals for catalytic reactions. From an environmental perspective, the novel synthesis of the ultrasmall EMT zeolite presented here represents a major advance, as the nanocrystals can be easily prepared at low temperature without the use of any noxious or expensive template.

Similarly, scale-up of an energy-efficient synthesis should be economically viable, since high temperatures, long reaction times and calcination steps are avoided. Moreover, important applications of these ultrasmall zeolite disks are anticipated, including catalysis with larger molecules, selective adsorption, and the design of ultrathin films, membranes, sensors and nanoscale devices. (suwe)

Publication:
Capturing Ultrasmall EMT Zeolite from Template-Free Systems
Eng-Poh Ng, Daniel Chateigner, Thomas Bein, Valentin Valtchev, Svetlana Mintova
Science online, 8. December 2011
DOI: 10.1126/science.1214798

####

For more information, please click here

Contacts:
Professor Thomas Bein
Department of Chemistry, LMU,
Nanosystems Initiative Munich (NIM),
Phone: +49 89 / 2180-77623


Dr. Kathrin Bilgeri

49-892-180-6938

Copyright © Ludwig-Maximilians-Universität München

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project