Home > Press > Targeted immune stimulation based on DNA Nanotechnology
Abstract:
DNA is usually known as the genetic code for protein synthesis in all living organisms. The application of DNA as a molecular building block on the other hand, allows for the construction of sophisticated nanoscopic shapes that are built entirely from DNA. In particular the recent invention of the so-called DNA origami method facilitates the fabrication of almost all imaginable 3D shapes. Here a phage-based DNA strand is used as a scaffold that is woven into shape by hundreds of short staple oligonucleotides. The outstanding advantage of DNA-based self-assembly is that during a single fabrication process billion exact copies of the designed DNA nanostructure are produced in parallel.
Now Prof. Tim Liedl, a member of NIM, and his team developed a DNA origami construct that serves as a carrier system to selectively stimulate immune responses of living cells. Together with the group of Prof. Carole Bourquin from the Klinikum der Universität München (KUM) the biophysicists investigated the systematic immune stimulatory effect and the potential cytotoxicity of these DNA nanostructures.
Our innate immune system can detect invasive organisms via a specific DNA motif, the so called CpG sequences ("Cytosine - phosphate - Guanine") which are prevalent in viruses and bacteria. When these sequences are internalized by certain immune cells, they are recognized by endosomal receptors like the Toll-Like Receptor 9 (TLR-9) which subsequently activate the immune system. The Toll-Like Receptors became famous at the latest in 2011, when Bruce Beutler and Jules Hoffmann received the Nobel Prize for their research on these kinds of receptors.
Verena Schüller from the Liedl group and her colleagues decorated a DNA origami construct with artificial CpG sequences and used it as an efficient non-toxic carrier system into cells. Together with the team of Carole Bourquin they demonstrated a selective immune stimulating effect of the DNA complexes by measuring the interleukin secretion of the cells as an indicator for immune activation. Such artificial nanostructures could act in future applications as target-selective delivery vehicles for the development of novel and non-toxic vaccine adjuvants or carrier systems in tumor immunotherapy.
Publication:
Cellular Immunostimulation by CpG-Sequence-Coated DNA Origami Structures. Verena Schüller, Simon Heidegger, Nadja Sandholzer, Philipp Nickels, Nina Suharta, Stefan Endres, Carole Bourquin and Tim Liedl. ACS Nano, 2011
####
For more information, please click here
Copyright © Nanosystems Initiative Munich
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||