Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Biocompatible Quantum Dot Images Tumors in Live Animals

Abstract:
Quantum dots, small semiconductor nanoparticles that fluoresce brightly with sharply defined colors, have tremendous promise as biomedical imaging agents except for one problem—most are made from potentially hazardous materials such as cadmium and selenium. Now, however, a collaborative effort between researchers at Stanford University and Xiamen University in China has produced a stable, biocompatible quantum dot that appears to have the desired set of properties needed for biomedical imaging.

Biocompatible Quantum Dot Images Tumors in Live Animals

Bethesda, MD | Posted on January 19th, 2012

The team led by Zhen Cheng of Xiamen University and Sanjiv Gambhir of Stanford University School of Medicine reported its work in the journal Nano Letters. Dr. Gambhir is the co-principal investigator of the Stanford University Center for Cancer Nanotechnology Excellence and Translation.

To solve the biocompatibility problem, the investigators searched for semiconducting materials that had the desired optical properties of fluorescing in the near-infrared region of the spectrum and yet were not potentially toxic. They settled on a combination of indium phosphide and zinc sulfide and created a nanoparticle with an indium phosphide core and a zinc sulfide shell. The resulting quantum dots fluoresced brightly at 710 nanometers, a wavelength of light that passes through biological tissues and can be seen from within the body. To improve the pharmacological properties of the quantum dots—their ability to travel unimpeded through the blood stream, penetrate tissues, and reach biological targets—the researchers coated the nanoparticles with a biocompatible polymer known as a dendrimer. This coating also served as a convenient attachment point for a three amino acid peptide arginine-glycine-aspartic acid, known as RGD, that targets many types of tumors.

Tests with cancer cells and tumor-bearing animals demonstrated that these nanoprobes clearly imaged tumors known to bind to RGD. Because of their small size, the quantum dots accumulated in tumors via the leaky blood vessels that surround tumors. Biodistribution tests showed that approximately 60 percent of an injected dose of the new quantum dots was cleared from the body within a day, and that 100 percent clearance was achieved within one week. Equally important, animals dosed with this new type of nanoparticle experienced no apparent ill effects.

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects."

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project