Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > System to deliver organ transplant drug -- without harmful side effects

This is professor Ravi Kumar of the University of Strathclyde.

Credit: University of Strathclyde
This is professor Ravi Kumar of the University of Strathclyde.

Credit: University of Strathclyde

Abstract:
A new system for delivering a drug to organ transplant patients, which could avoid the risk of harmful side effects, is being developed by scientists at the University of Strathclyde in Glasgow.

System to deliver organ transplant drug -- without harmful side effects

Glasgow, UK | Posted on January 26th, 2012

The drug, cyclosporine (CsA), is widely used in transplant operations and helps prevent the patient's body rejecting the organ but it can cause adverse drug reactions, of which the most serious problems are kidney and liver damage, in the doses which are currently administered in the long term.

The gap between a safe, effective dose of the treatment and a toxic dose is extremely narrow but the Strathclyde scientists have found a way of capturing CsA in very small amounts. The new system, developed in laboratory tests, enables nanoparticles of the drug to be delivered orally so that the strength of the dose can be maintained, but at a level and in a form which spares kidneys from damage.

Professor Ravi Kumar, of the Strathclyde Institute of Pharmacy and Biomedical Sciences, led the research. He said: "CsA is very useful in transplants and treating conditions such as arthritis, lupus and some forms of diabetes, but we need to address the risks it can present to the kidney and liver, apart from various other toxicities such as convulsions and high blood pressure.

"The damage it can cause can be dealt with if it's caught at an early stage but can be irreversible if it continues unchecked. Furthermore, existing formulations of cyclosporine contain castor oil-based vehicle which is used owing to the drug's poor solubility in water but which can be toxic.

"By entrapping CsA in nanoparticles, we aimed to match the maximum concentration of the most potent formulation of the drug in market. In tests, we were able to strike a balance between strength, efficacy and safety and were able to make a marked increase in the drug's bioavailability- the level of the drug which becomes active in the system.

"We were also able to reduce the toxic effects on the kidneys by slow release of the nanoparticles, which brought the drug gradually to its maximum concentration.

"As well as its use in transplants, we hope to look into the effectiveness of this system with arthritis and address what is a hugely debilitating condition for many people."

The research paper has been published in the Journal of Biomedical Nanotechnology.

Further current research is aimed at proving the therapeutic efficacy and long-term safety of cyclosporine, with a special focus on the safety of carriers- polymers used in the formulation- to fulfil regulatory requirements. The safety studies element of the research has been funded by the Cunningham Trust Scotland and will conclude early in 2013.

The research forms part of Health Technologies at Strathclyde- one of the principal themes of the University's Technology and Innovation Centre (TIC), a world-leading research and technology centre transforming the way universities, business and industry collaborate.

Through Health Technologies at Strathclyde, academics work with industry and the health sector to find technologies for earlier, more accurate disease detection and better treatments, as well as life-long disease prevention.

####

Contacts:
Paul Gallagher

44-141-548-2370

Copyright © University of Strathclyde

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project