Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ferroelectric Nanotubes: “Soft Template Infiltration” Technique Fabricates Free-Standing Piezoelectric Nanostructures from PZT Material

Ferroelectric-structures: Composite scanning electron microscope (SEM) image of PZT nanotube arrays and their piezoelectric response as measured by Band-Excitation PFM (BE-PFM). (Image courtesy of Ashley Bernal and Nazanin Bassiri-Gharb)
Ferroelectric-structures: Composite scanning electron microscope (SEM) image of PZT nanotube arrays and their piezoelectric response as measured by Band-Excitation PFM (BE-PFM). (Image courtesy of Ashley Bernal and Nazanin Bassiri-Gharb)

Abstract:
Researchers have developed a "soft template infiltration" technique for fabricating free-standing piezoelectrically active ferroelectric nanotubes and other nanostructures from PZT - a material that is attractive because of its large piezoelectric response. Developed at the Georgia Institute of Technology, the technique allows fabrication of ferroelectric nanostructures with user-defined shapes, location and pattern variation across the same substrate.

Ferroelectric Nanotubes: “Soft Template Infiltration” Technique Fabricates Free-Standing Piezoelectric Nanostructures from PZT Material

Atlanta, GA | Posted on February 21st, 2012

The resulting structures, which are 100 to 200 nanometers in outer diameter with thickness ranging from 5 to 25 nanometers, show a piezoelectric response comparable to that of PZT thin films of much larger dimensions. The technique could ultimately lead to production of actively-tunable photonic and phononic crystals, terahertz emitters, energy harvesters, micromotors, micropumps and nanoelectromechanical sensors, actuators and transducers - all made from the PZT material.

Using a novel characterization technique developed at Oak Ridge National Laboratory, the researchers for the first time made high-accuracy in-situ measurements of the nanoscale piezoelectric properties of the structures.

"We are using a new nano-manufacturing method for creating three-dimensional nanostructures with high aspect ratios in ferroelectric materials that have attractive piezoelectric properties," said Nazanin Bassiri-Gharb, an assistant professor in Georgia Tech's Woodruff School of Mechanical Engineering. "We also leveraged a new characterization method available through Oak Ridge to study the piezoelectric response of these nanostructures on the substrate where they were produced."

The research was published online on Jan. 26, 2012, and is scheduled for publication in the print edition (Vol. 24, Issue 9) of the journal Advanced Materials. The research was supported by Georgia Tech new faculty startup funds.



Ferroelectric materials at the nanometer scale are promising for a wide range of applications, but processing them into useful devices has proven challenging - despite success at producing such devices at the micrometer scale. Top-down manufacturing techniques, such as focused ion beam milling, allow accurate definition of devices at the nanometer scale, but the process can induce surface damage that degrades the ferroelectric and piezoelectric properties that make the material interesting.

Until now, bottom-up fabrication techniques have been unable to produce structures with both high aspect ratios and precise control over location. The technique reported by the Georgia Tech researchers allows production of nanotubes made from PZT (PbZr0.52Ti0.48O3) with aspect ratios of up to 5 to 1.

"This technique gives us a degree of control over the three-dimensional process that we've not had before," said Bassiri-Gharb. "When we did the characterization, we saw a size effect that until now had been observed only in thin films of this material at much larger size scales."

The ferroelectric nanotubes are especially interesting because their properties - including size, shape, optical responses and dielectric characteristics - can be controlled by external forces even after they are fabricated.

"These are truly smart materials, which means they respond to external stimuli such as applied electric fields, thermal fields or stress fields," said Bassiri-Gharb. "You can tune them to behave differently. Devices made from these materials could be fine tuned to respond to a different wavelength or to emit at a different wavelength during operation."

For example, the piezoelectric effect could permit fabrication of "nano-muscle" tubes that would act as tiny pumps when an electric field is applied to them. The fields could also be used to tune the properties of photonic crystals, or to create structures whose size can be altered slightly to absorb electromagnetic energy of different wavelengths.

In fabricating the nanotubes, Bassiri-Gharb and graduate student Ashley Bernal (currently an assistant professor at the Rose-Hulman Institute of Technology) began with a silicon substrate and spin-coated a negative electron-beam resist material onto it. A template was created using electron-beam lithography, and a thin layer of aluminum oxide was added on top of that using atomic layer deposition.

Next, the template was immersed under vacuum into an ultrasound bath containing a chemical precursor solution for PZT. The structures were pyrolyzed at 300 degrees Celsius, then annealed in a two-step heat treating process at 600 and 800 degrees Celsius to crystallize the material and decompose the polymer substrate. The process produced free-standing PZT nanotubes connected by a thin layer of the original aluminum oxide. Increasing the amount of chemical infiltration allows production of solid nanorods or nanowires instead of hollow nanotubes.

Though the researchers used electron beam lithography to create the template on which the structures were grown, in principle, many other chemical, optical or mechanical patterning techniques could be used for create the templates, Bassiri-Gharb noted.

In studies done in collaboration with researchers Sergei Kalinin and Alexander Tselev of the Center for Nanophase Materials Sciences at the Oak Ridge National Laboratory, the devices produced by the soft template process were analyzed with band-excitation piezoresponse force microscopy (BPFM). The technique allowed researchers to isolate properties of the AFM tip from those of the PZT sample, allowing analysis in sufficient detail to detect the size-scale piezoelectric effects.

"One of our most important observations is that these piezoelectric nanomaterials allow us to generate a factor of four to six increase in the extrinsic piezoelectric response compared to the use of thin films," said Baassiri-Gharb. "This would be a huge advantage in terms of manufacturing because it means we could get the same response from much smaller structures than we would have had to otherwise use."

Writer: John Toon

####

About Georgia Institute of Technology
The Center for Nanophase Materials Sciences is one of the five Department of Energy (DOE) Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale that are supported by the DOE Office of Science. Together, the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers/.

For more information, please click here

Contacts:
Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA

Media Relations Contacts:
John Toon
404-894-6986


Abby Robinson
404-385-3364

Copyright © Georgia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Sensors

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project