Home > Press > Single molecules in a quantum movie
![]() |
These are selected frames of a movie showing the buildup of a quantum interference pattern from single phthalocyanine molecules.
Credit: Image credits: University of Vienna/Juffmann et al. (Nature Nanotechnology 2012) |
Abstract:
The quantum physics of massive particles has intrigued physicists for more than 80 years, since it predicts that even complex particles can exhibit wave-like behaviour - in conflict with our everyday ideas of what is real or local. An international team of scientists now succeeded in shooting a movie which shows the build-up of a matter-wave interference pattern from single dye molecules which is so large (up to 0.1 mm) that you can easily see it with a camera.
This visualizes the dualities of particle and wave, randomness and determinism, locality and delocalization in a particularly intuitive way. Seeing is believing: the movie by Thomas Juffmann et al. will be published on March 25 in "Nature Nanotechnology".
A quantum premiere with dye molecules as leading actors
Physicist Richard Feynman once claimed that interference effects caused by matter-waves contain the only mystery of quantum physics. Understanding and applying matter waves for new technologies is also at the heart of the research pursued by the Quantum Nanophysics team around Markus Arndt at the University of Vienna and the Vienna Center for Quantum Science and Technology.
The scientists now premiered a movie which shows the build-up of a quantum interference pattern from stochastically arriving single phthalocyanine particles after these highly-fluorescent dye molecules traversed an ultra-thin nanograting. As soon as the molecules arrive on the screen the researchers take live images using a spatially resolving fluorescence microscope whose sensitivity is so high that each molecule can be imaged and located individually with an accuracy of about 10 nanometers. This is less than a thousandth of the diameter of a human hair and still less than 1/60 of the wavelength of the imaging light.
A breath of nothing
In these experiments van der Waals forces between the molecules and the gratings pose a particular challenge. These forces arise due to quantum fluctuations and strongly affect the observed interference pattern. In order to reduce the van der Waals interaction the scientists used gratings as thin as 10 nanometers (only about 50 silicon nitride layers). These ultra-thin gratings were manufactured by the nanotechnology team around Ori Cheshnovski at the Tel Aviv University who used a focused ion beam to cut the required slits into a free-standing membrane.
Tailored nanoparticles
Already in this study the experiments could be extended to phthalocyanine heavier derivatives which were tailor-made by Marcel Mayor and his group at the University of Basel. They represent the most massive molecules in quantum far-field diffraction so far.
Motivation and continuation
The newly developed and combined micro- and nanotechnologies for generating, diffracting and detecting molecular beams will be important for extending quantum interference experiments to more and more complex molecules but also for atom interferometry.
The experiments have a strongly didactical component: they reveal the single-particle character of complex quantum diffraction patterns on a macroscopic scale that is visible to the eye. You can see them emerge in real-time and they last for hours on the screen. The experiments thus render the wave-particle duality of quantum physics particularly tangible and conspicuous.
The experiments have a practical side, too. They allow to access molecular properties close to solid interfaces and they show a way towards future diffraction studies at atomically thin membranes.
This project was supported by the Austrian FWF Z149-N16 (Wittgenstein), ESF/FWF/SNF MIME (I146) and the Swiss SNF in the NCCR "Nanoscale Science".
Publication in "Nature Nanotechnology" Real-time single-molecule imaging of quantum interference: Thomas Juffmann, Adriana Milic, Michael Müllneritsch, Peter Asenbaum, Alexander Tsukernik, Jens Tüxen, Marcel Mayor, Ori Cheshnovsky and Markus Arndt. Nature Nanotechnology (2012). DOI: 10.1038/NNANO.2012.34. Online Publication: 25.3.2012
####
For more information, please click here
Contacts:
Scientific contact
Prof. Markus Arndt (Quantum interference)
T 43-1-4277-512 10
http://www.quantumnano.at
Prof. Ori Cheshnovski (Nanofabrication)
T 972-3-6408325
http://www.tau.ac.il/chemistry/cheshn
Prof. Marcel Mayor (Chemical synthesis)
T 41-61-267-10-06
http://www.chemie.unibas.ch/~mayor/index.html
Copyright © University of Vienna
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
After March 26th 2012, the movie will be accessible through Nature Nanotechnology and through:
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Quantum nanoscience
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |