Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A giant step in a miniature world: UZH researcher measures the electrical charge of nano particles

This is a cross-section through two chip-sized glass plates in which a nano particle is trapped in an energy hole (or “potential well” to use the scientific term). The colored fields show the different charges in the electrostatic field. The red zone signifies a very low charge, while the blue edges have a strong charge.

Credit: Picture: University of Zurich
This is a cross-section through two chip-sized glass plates in which a nano particle is trapped in an energy hole (or “potential well” to use the scientific term). The colored fields show the different charges in the electrostatic field. The red zone signifies a very low charge, while the blue edges have a strong charge.

Credit: Picture: University of Zurich

Abstract:
In order to observe the individual particles in a solution, Prof. Madhavi Krishnan and her co-workers «entice» each particle into an «electrostatic trap». It works like this: between two glass plates the size of a chip, the researchers create thousands of round energy holes. The trick is that these holes have just a weak electrostatic charge. The scientists than add a drop of the solution to the plates, whereupon each particle falls into an energy hole and remains trapped there. But the particles do not remain motionless in their trap. Instead, molecules in the solution collide with them continuously, causing the particles to move in a circular motion. «We measure these movements, and are then able to determine the charge of each individual particle», explains Prof. Madhavi Krishnan.

A giant step in a miniature world: UZH researcher measures the electrical charge of nano particles

Zurich, Switzerland | Posted on July 30th, 2012

Put simply, particles with just a small charge make large circular movements in their traps, while those with a high charge move in small circles. This phenomenon can be compared to that of a light-weight ball which, when thrown, travels further than a heavy one. The US physicist Robert A. Millikan used a similar method 100 years ago in his oil drop experiment to determine the velocity of electrically charged oil drops. In 1923, he received the Nobel Prize in physics in recognition of his achievements. «But he examined the drops in a vacuum», Prof. Krishnan explains. «We on the other hand are examining nano particles in a solution which itself influences the properties of the particles».

Electrostatic charge of «nano drugs packages»

For all solutions manufactured industrially, the electrical charge of the nano particles contained therein is also of primary interest, because it is the electrical charge that allows a fluid solution to remain stable and not to develop a lumpy consistency. «With our new method, we get a picture of the entire suspension along with all of the particles contained in it», emphasizes Prof. Madhavi Krishnan. A suspension is a fluid in which miniscule particles or drops are finely distributed, for example in milk, blood, various paints, cosmetics, vaccines and numerous pharmaceuticals. «The charge of the particles plays a major role in this», the Zurich-based scientist tells us.

One example is the manufacture of medicines that have to be administered in precise doses over a longer period using drug-delivery systems. In this context, nano particles act as «packages» that transport the drugs to where they need to take effect. Very often, it is their electrical charge that allows them to pass through tissue and cell membranes in the body unobstructed and so to take effect. «That's why it is so important to be able to measure their charge. So far most of the results obtained have been imprecise», the researcher tells us.

«The new method allows us to even measure in real-time a change in the charge of a single entity», adds Prof. Madhavi Krishnan. «This is particularly exciting for basic research and has never before been possible». This is because changes in charge play a role in all bodily reactions, whether in proteins, large molecules such as the DNA double helix, where genetic make-up is encoded, or cell organelles. «We're examining how material works in the field of millionths of a millimeter».

####

For more information, please click here

Contacts:
Prof. Dr. Madhavi Krishnan
Universität Zürich
Physikalisch-chemisches Institut
Phone: +41 44 635 44 65
madhavi.krishnan@ uzh.ch

Copyright © University of Zurich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Literature: Mojarad, N, and Krishnan, M., Measuring the size and charge of single nanoscale objects in solution using an electrostatic fluidic trap. Nature Nanotechnology (2012)

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project