Home > Press > The search for new materials for hydrogen storage
Four types of materials studied in the dissertation: fullerene C60, carbon nanotubes, metal-organic frameworks (MOFs), and fullerene C60 encapsulated inside carbon nanotubes. |
Abstract:
Hydrogen is the ideal fuel for new types of fuel cell vehicles, but one problem is how to store hydrogen. In his doctoral dissertation Serhiy Luzan studies new types of materials for hydrogen storage. He also shows that new materials with interesting properties can be synthesized by the reaction of hydrogen with carbon nano-structured materials. The dissertation will be publicly defended on September 28 at Umeå University in Sweden.
New car engines that run on hydrogen produce only water as exhaust and are three to four times more efficient than ordinary internal combustion engines. Just one "small" problem is hampering the development of hydrogen-powered vehicles: there is no good method for storing sufficient amounts of hydrogen, as it is a gas of very low density.
Serhiy Luzan devotes the first part of his dissertation to studies of hydrogen storage in exciting new types of materials: metal-organic frameworks (MOFs). They consist of zinc- and cobalt-based metal clusters linked together via organic linkers, and they are extremely porous. One gram of MOF has a hydrogen-absorbing surface that is larger than a football field! Dozens of new MOF materials are synthesized each year, which is highly promising for the next generation of hydrogen storage materials.
Serhiy studied the hydrogen absorption of several new MOFs and researched the effects of different surface areas, pore volumes, and pore forms on the hydrogen storage parameters. MOFs can store record amounts of hydrogen at very low temperatures, but the hydrogen capacity at room temperature is not good enough. Luzan therefore studied new methods to enhance this capacity. Addition of metal catalysts has previously been reported to improve hydrogen storage considerably.
"But in my study, the effect of metal catalysts addition on hydrogen absorption in MOFs was not confirmed," says Serhihy Luzan.
Hydrogen is of interest not only as a fuel but also for chemical modification of nano-structured carbon materials, such as carbon nanotubes, fullerenes, and graphene. Graphene is a single layer of carbon atoms. Carbon nanotubes also consist of pure carbon, in the form of graphene layers rolled into a cylinder. Fullerene, C60, consist of sixty carbon atoms arranged in five- or six-vertices figures, just like the pattern on a soccer ball. There are carbon materials that are stronger than steel, conduct current better than copper, and diffuse heat better than diamond.
In the second part of the dissertation Luzan describes the materials he created by the reaction of hydrogen with fullerenes and carbon nanotubes.
Luzan studied the reaction between fullerene C60 and hydrogen at elevated temperatures and hydrogen pressures, with and without the addition of metal catalysts. The reaction resulted in the formation of hydrogenated fullerenes, C60Hx. Upon extended hydrogen treatment, the fullerene structure fragmented and collapsed. This outcome shows that it is possible to break down fullerenes stepwise into smaller cup-like molecules, which are stabilized by hydrogen atoms. This is a structure that was previously difficult to achieve.
"With this method, we should be able to use fullerenes as a relatively inexpensive source material for creating new molecules that hopefully would retain interesting properties from the original carbon nano-material," says Serhihy Luzan.
Hydrogenated graphene (graphane) is expected to be an ideal material for new carbon-based electronics, but graphane is difficult to synthesize by a direct reaction between graphene and hydrogen. It is much easier first to hydrogenate carbon nanotubes and then to cut them along the tube axis into so-called nanoribbons, which have hydrogen covalently bonded to the surface.
Luzan's experiments showed that the reaction between single-wall carbon nanotubes and hydrogen is possible if a suitable catalyst is used, and he was able to observe that some of the nanotubes were converted to graphene or graphane nanoribbons.
About the public defense:
On Friday, September 28, Serhiy Luzan, Department of Physics, will defend his thesis titled: Materials for hydrogen storage and synthesis of new materials by hydrogenation. Title in Swedish: Material för vätelagring och syntes av nya material genom hydrering.
The public defense will take place at 1:00, p.m. in room N300.
The external examiner is Prof. Dr. Yaroslav Filinchuk, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
Read the whole or parts of the dissertation at:
urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-58663
####
For more information, please click here
Contacts:
David Meyers
+46 (0)90- 786 98 95
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Automotive/Transportation
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Fuel Cells
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||