Home > Press > Single-Crystal, Organic Nanowire High-Performance Phototransistors
Abstract:
The development of organic phototransistors (OPTs) based on single-crystalline n-channel nanowires (NWs) that are in turn based on organic semiconductors is highly desirable for bottom-up fabrication of complementary photoelectronic circuits, providing high operational stability, easy control of photoswitching voltages, a high photosensitivity, and good responsivity. To date, however, the literature has focused on thin-film OPTs, and single-crystalline NW OPTs have received much less attention.
Prof. Joon Hak Oh and Hojeong Yu, working at UNIST in Ulsan, South Korea, together with Zhenan Bao at Stanford University, USA, have worked on organic single-crystalline NW OPTs fabricated using N,N'-bis(2-phenylethyl)-perylene-3,4:9,10-tetracarboxylic diimide, which is an example of a high-performance n-channel organic semiconductor, as the photoactive layer.
The researchers observed a highly sensitive and reproducible photoresponse from their NW OPTs and made quantitative investigations into the photogenerated charge-carrier behavior. There was a significant enhancement in the charge-carrier mobility upon light irradiation, as compared with the charge-carrier mobility in the dark, and the mobility was enhanced at a higher incident power density, as well as being dependent on the wavelength of the incident light. The external quantum efficiency of the NW OPT devices was much higher than that of thin-film OPTs, attributed to the defect-free single-crystalline nature of the nanowires.
The findings highlight organic single-crystalline NW-OPTs as an alternative to conventional thin-film-type photodiodes, and could help towards optoelectronic device miniaturization.
####
For more information, please click here
Copyright © Wiley-VCH Materials Science Journals
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Link to the original paper on Wiley Online Library:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023
New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022
Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Optical computing/Photonic computing
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||