Home > Press > University of Illinois-led SONIC Center awarded $30 million for computing on nanoscale fabrics
Naresh Shanbhag |
Abstract:
Led by faculty at the University of Illinois at Urbana-Champaign, a multi-university research team has received $30 million to launch the Systems On Nanoscale Information fabriCs (SONIC) Center. The center - part of a new $194 million initiative called the Semiconductor Technology Advanced Research network (STARnet) - will focus on substantially enhancing the information processing power and storage capacity of integrated circuits (ICs) and related systems, which is critical in maintaining reliability as devices continue to shrink and improve in energy efficiency.
Society is increasingly dependent on electronic information and has come to expect electronic devices - cell phones, tablets, laptops, cameras and others - to decrease in cost, offer more features and provide longer-lasting battery power. In the past, such advances have been made possible by the frequent reduction in size of a basic building block - the transistor switch.
Today, these switches are so small that their behavior is fraught with uncertainty due to quantum effects. The challenge is to design reliable and energy-efficient computing systems using the unreliable switches that arise as researchers seek to make devices even smaller and more energy-efficient. SONIC's innovative research agenda seeks to address this issue by treating the problem of computing using unreliable devices and circuits as one of communicating information over unreliable channels.
"Essentially, we're not going to try to build a reliable switch, but instead discover methods to build reliable systems," said SONIC Director Naresh Shanbhag, the Jack S. Kilby Professor of Electrical and Computer Engineering. "It turns out that while information resides at the highest level and nanoscale components at the lowest level, they can both be mathematically described with the same statistical framework. No one has successfully captured this similarity between them before."
The center seeks to create a new computing paradigm - using information processing instead of data processing - to extend scaling of nanoscale devices beyond what is feasible today. Computing devices today are primarily data pipes and data crunchers. By borrowing probabilistic techniques from the field of communications, SONIC researchers plan to transform these systems into statistical information processors that are able to infer intent and handle uncertainty while consuming much less energy than traditional computers.
SONIC is supported by STARnet, which will provide funding over the next five years to six centers at universities. Funded by the Department of Defense and U.S. semiconductor and supplier companies as a public-private partnership, STARnet projects help maintain U.S. leadership in semiconductor technology vital to U.S. prosperity, security and intelligence. The STARnet program is administered by the Semiconductor Research Corporation (SRC), the world's leading university research consortium for semiconductors and related technologies, and the Defense Advanced Projects Research Agency (DARPA), part of the Department of Defense.
"STARnet is a collaborative network of stellar university research centers whose goal is to enable the continued pace of growth of the microelectronics industry, unconstrained by the daunting list of fundamental physical limits that threaten," said Gilroy Vandentop, the new SRC program executive director.
"This is a truly multidisciplinary research effort. Here at Illinois, we have faculty investigators from the Departments of Computer Science, Electrical and Computer Engineering, and Materials Science and Engineering, " said Andrew Singer, a theme leader in SONIC and a Professor of Electrical and Computer Engineering. The Coordinated Science Laboratory at Illinois, where four SONIC researchers are faculty members, will support SONIC's administrative activities.
The SONIC team consists of 23 faculty researchers from universities across the nation, including Carnegie Mellon University; Princeton University; Stanford University; the University of California, Berkeley; the University of California, San Diego; the University of California, Santa Barbara; and the University of Michigan. Other Illinois faculty include Pavan Kumar Hanumolu, Rakesh Kumar, and Eric Pop, Electrical and Computer Engineering; John A. Rogers, Materials Science and Engineering; and Rob Rutenbar, Computer Science.
In addition to SONIC, University of Illinois researchers are also involved with two other STARnet research centers. Douglas L. Jones, a Professor of Electrical and Computer Engineering, will contribute to the TerraSwarm Research Center at the University of California, Berkeley, which aims to address pervasive integration of smart, networked sensors and actuators into our connected world. Wen-mei Hwu and Deming Chen, both Electrical and Computer Engineering faculty, will participate in the Center for Future Architectures Research (C-FAR), led by the University of Michigan. C-FAR will develop future scalable computer systems architectures that leverage emerging circuit fabrics to enable new commercial/defense applications.
####
Contacts:
Kim Gudeman
Coordinated Science Laboratory
1308 West Main Street
Urbana, IL 61801
217.333.9735
Copyright © University of Illinois at Urbana-Champaign
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||