Home > Press > Revolutionary new device joins world of smart electronics: Unique properties of graphene and graph Exeter combine to create a new flexible, transparent, photosensitive device
Abstract:
Smart electronics are taking the world by storm. From techno-textiles to transparent electronic displays, the world of intelligent technology is growing fast and a revolutionary new device has just been added to its ranks. Researchers at the University of Exeter have developed a new photoelectric device that is both flexible and transparent. The device, described in a paper in the journal ACS Nano, converts light into electrical signals by exploiting the unique properties of the recently discovered materials graphene and graphExeter. GraphExeter is the best known room temperature transparent conductor and graphene is the thinnest conductive material.
At just a few atoms thick, the newly developed photoelectric device is ultra-lightweight. This, along with the flexibility of its constituent graphene materials, makes it perfect for incorporating into clothing. Such devices could be used to develop photovoltaic textiles enabling clothes to act as solar panels and charge mobile phones while they are being worn.
Photosensitive materials and devices such as the one developed at Exeter can, in the future, also be used for intelligent windows that are able to harvest electricity and display images while remaining transparent. Smart materials have almost unlimited potential applications from integral iPods and keyboards in clothing to electronic displays on glasses and goggles.
Saverio Russo, Professor of Physics at the University of Exeter said: "This new flexible and transparent photosensitive device uses graphene and graphExeter to convert light into electrical signals with efficiency comparable to that found in opaque devices based on graphene and metals.
"We are only just starting to explore the interfaces between different materials at very small scales and, as this research shows, we are revealing unique properties that we never knew existed. Who knows what surprises are just around the corner."
Metallic nanostructures in smart materials typically cause a haze that prevents them from being truly transparent. The photosensitive device developed at Exeter contains no metals and is therefore completely transparent but, as it can detect light from across the whole visible light spectrum, it is as efficient at sensing light as other recently developed opaque photoelectric devices.
This work was financially supported by the Engineering and Physical Sciences Research Council (EPSRC).
####
About University of Exeter
The Sunday Times University of the Year 2012-13, the University of Exeter is a Russell Group university and in the top one percent of institutions globally. It combines world-class research with very high levels of student satisfaction. Exeter has over 18,000 students and is ranked 7th in The Sunday Times University Guide, 10th in the UK in The Times Good University Guide 2012 and 10th in the Guardian University Guide. In the 2008 Research Assessment Exercise (RAE) 90% of the University's research was rated as being at internationally recognised levels and 16 of its 31 subjects are ranked in the top 10, with 27 subjects ranked in the top 20.
The University has invested strategically to deliver more than £350 million worth of new facilities across its campuses for 2012, including landmark new student services centres - the Forum in Exeter and The Exchange in Cornwall - and world-class new facilities for Biosciences, the Business School and the Environment and Sustainability Institute.
About the Engineering and Physical Sciences Research Council
The Engineering and Physical Sciences Research Council (EPSRC) is the UK's main agency for funding research in engineering and the physical sciences. EPSRC invests around £800 million a year in research and postgraduate training, to help the nation handle the next generation of technological change. The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone's health, lifestyle and culture. EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via Research Councils UK. www.epsrc.ac.uk
For more information, please click here
Contacts:
Jo Bowler
University of Exeter Press Office
44-013-927-22062
Mobile: +44(0)7827 309 332
Copyright © University of Exeter
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Textiles/Clothing
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022
Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||