Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Next-generation transistor outperforms other carbon-based designs

Chongwu Zhou, corresponding author of a paper about the transistor that was published online by ACS Nano
Chongwu Zhou, corresponding author of a paper about the transistor that was published online by ACS Nano

Abstract:
A team of engineers from USC has constructed the highest-performing carbon nanotube transistor to date.

Next-generation transistor outperforms other carbon-based designs

Los Angeles, CA | Posted on May 7th, 2013

Next-generation transistor outperforms other carbon-based designs

By Robert Perkins
May 7, 2013

A team of engineers from USC has constructed the highest-performing carbon nanotube transistor to date.

Transistors are semiconductor switches and amplifiers that are key components of almost all electronic devices, from radios to cellphones to computers.

The new carbon nanotube transistor has an extrinsic performance — the limit of its practical, usable operating frequency — of 25 Gigahertz (GHz). By comparison, its closest competitor, built by the Institut d'Électronique de Microélectronique et de Nanotechnologie, peaks at 15 GHz.

"Carbon nanotubes have unique properties and great potential in advanced electronic application," said Chongwu Zhou, professor at the USC Viterbi School of Engineering and corresponding author of a paper about the transistor that was published online by ACS Nano on April 16. "This is the very first report of analog circuits based on self-aligned nanotube array transistors operated in the gigahertz regime.

"The characterization of nanotube transistor-based analog circuits is of great importance for further exploring the potential of nanotubes in high-frequency applications with fast speed and low-power consumption requirement," he added.

Zhou led a team that included USC PhD students Yuchi Che, Yuncheng Lin and Pyo Jae Kim.

The new transistor takes advantage of a new T-shaped design that is a mere 200 nanometers wide. The design helps reduce parasitic effects on the transistor's performance and boosts the speed of the transistor's response by scaling down its channel length. Zhou and his team recently patented the design.

Scientists have long eyed carbon nanotubes as a replacement for silicon semiconductors in commercial electronics because carbon has superior electrical properties and can be used to build smaller transistors.

Though current carbon nanotube-based designs come nowhere near the older silicon technology — which can perform at around 500 GHz — they have the potential, theoretically, to reach 1,000 GHz frequency performance.

"It is a significant step toward the practical application of carbon nanotube RF transistor as a promising candidate for next-generation electronics," said Che, lead author of the ACS Nano paper.

Zhou and his research group continue to work on optimizing carbon nanotube-based analog electronics. Their final goal is to generate carbon nanotube transistors and circuits that offer superior performance to traditional industrial technology.

This research as funded by the Joint KACST/California Center of Excellence and the Office of Naval Research (ONR).

####

For more information, please click here

Contacts:
Robert Perkins
(213) 740-9226

Copyright © University of Southern California

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project