Home > Press > Even with Defects, Graphene is Strongest Material in the World: New Study Reveals Strength of CVD Graphene
Abstract:
In a new study, published in Science May 31, 2013, Columbia Engineering researchers demonstrate that graphene, even if stitched together from many small crystalline grains, is almost as strong as graphene in its perfect crystalline form. This work resolves a contradiction between theoretical simulations, which predicted that grain boundaries can be strong, and earlier experiments, which indicated that they were much weaker than the perfect lattice.
Graphene consists of a single atomic layer of carbon, arranged in a honeycomb lattice. "Our first Science paper, in 2008, studied the strength graphene can achieve if it has no defects—its intrinsic strength," says James Hone, professor of mechanical engineering, who led the study with Jeffrey Kysar, professor of mechanical engineering. "But defect-free, pristine graphene exists only in very small areas. Large-area sheets required for applications must contain many small grains connected at grain boundaries, and it was unclear how strong those grain boundaries were. This, our second Science paper, reports on the strength of large-area graphene films grown using chemical vapor deposition (CVD), and we're excited to say that graphene is back and stronger than ever."
The study verifies that commonly used methods for post-processing CVD-grown graphene weaken grain boundaries, resulting in the extremely low strength seen in previous studies. The Columbia Engineering team developed a new process that prevents any damage of graphene during transfer. "We substituted a different etchant and were able to create test samples without harming the graphene," notes the paper's lead author, Gwan-Hyoung Lee, a postdoctoral fellow in the Hone lab. "Our findings clearly correct the mistaken consensus that grain boundaries of graphene are weak. This is great news because graphene offers such a plethora of opportunities both for fundamental scientific research and industrial applications."
In its perfect crystalline form, graphene (a one-atom-thick carbon layer) is the strongest material ever measured, as the Columbia Engineering team reported in Science in 2008—so strong that, as Hone observed, "it would take an elephant, balanced on a pencil, to break through a sheet of graphene the thickness of Saran Wrap." For the first study, the team obtained small, structurally perfect flakes of graphene by mechanical exfoliation, or mechanical peeling, from a crystal of graphite. But exfoliation is a time-consuming process that will never be practical for any of the many potential applications of graphene that require industrial mass production.
Currently, scientists can grow sheets of graphene as large as a television screen by using chemical vapor deposition (CVD), in which single layers of graphene are grown on copper substrates in a high-temperature furnace. One of the first applications of graphene may be as a conducting layer in flexible displays.
"But CVD graphene is ‘stitched' together from many small crystalline grains—like a quilt—at grain boundaries that contain defects in the atomic structure," Kysar explains. "These grain boundaries can severely limit the strength of large-area graphene if they break much more easily than the perfect crystal lattice, and so there has been intense interest in understanding how strong they can be."
The Columbia Engineering team wanted to discover what was making CVD graphene so weak. In studying the processing techniques used to create their samples for testing, they found that the chemical most commonly used to remove the copper substrate also causes damage to the graphene, severely degrading its strength.
Their experiments demonstrated that CVD graphene with large grains is exactly as strong as exfoliated graphene, showing that its crystal lattice is just as perfect. And, more surprisingly, their experiments also showed that CVD graphene with small grains, even when tested right at a grain boundary, is about 90% as strong as the ideal crystal.
"This is an exciting result for the future of graphene, because it provides experimental evidence that the exceptional strength it possesses at the atomic scale can persist all the way up to samples inches or more in size," says Hone. "This strength will be invaluable as scientists continue to develop new flexible electronics and ultrastrong composite materials."
Strong, large-area graphene can be used for a wide variety of applications such as flexible electronics and strengthening components—potentially, a television screen that rolls up like a poster or ultrastrong composites that could replace carbon fiber. Or, the researchers speculate, a science fiction idea of a space elevator that could connect an orbiting satellite to Earth by a long cord that might consist of sheets of CVD graphene, since graphene (and its cousin material, carbon nanotubes) is the only material with the high strength-to-weight ratio required for this kind of hypothetical application.
The team is also excited about studying 2D materials like graphene. "Very little is known about the effects of grain boundaries in 2D materials," Kysar adds. "Our work shows that grain boundaries in 2D materials can be much more sensitive to processing than in 3D materials. This is due to all the atoms in graphene being surface atoms, so surface damage that would normally not degrade the strength of 3D materials can completely destroy the strength of 2D materials. However with appropriate processing that avoids surface damage, grain boundaries in 2D materials, especially graphene, can be nearly as strong as the perfect, defect-free structure."
The study was supported by grants from the Air Force Office of Scientific Research and the National Science Foundation.
####
About Columbia Engineering
Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world’s leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of modern society’s more difficult challenges
For more information, please click here
Contacts:
Holly Evarts
Director
Strategic Communications and Media Relations
212-854-3206 (o)
347-453-7408 (c)
Copyright © Columbia Engineering
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Flexible Electronics
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||