Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Spinning up antibacterial silver on glass

Abstract:
The antibacterial effects of silver are well established. Now, researchers at Yonsei University in Seoul, Republic of Korea, have developed a technique to coat glass with a layer of silver ions that can prevent growth of pathogenic bacteria including Escherichia coli, Salmonella typhimurium and Campylobacter jejuni. The technology could be used to protect medical equipment and be particularly useful for applications in disaster recovery and the military environment.

Spinning up antibacterial silver on glass

Seoul, South Korea | Posted on June 27th, 2013

Materials scientist Se-Young Choi and colleagues Cheol-Young Kim, Yu-Ri Choi and Kwang-Mahn Kim, explain in the International Journal of Nanotechnology how silver has been known to be an antibacterial substance since the middle of the nineteenth century. It has found applications in bactericidal formulations for medical instruments and even odor-destroying socks

A big advantage of the use of this substance rather than organic agents against bacteria is that bacteria are yet to evolve resistance to it whereas genetic mutations that lead to proteins that can assimilate and degrade organic compounds frequently arise. As such, silver solutions have been used widely as disinfectants, in water purification in and in dentistry. Scientists have demonstrated that silver ions can latch on to sulfur-containing thiol groups in bacterial biomolecules disrupting their activity and thereby killing the microbes. Finding a way to add a permanent silver ion coating to glass would expand the antibacterial repertoire much further allowing a wider range of medical instruments, drinking vessels and other equipment to be kept sanitary regardless of working conditions.

The Seoul team has now developed a way to "spin" coat glass with silver present in a so-called sol-gel, a type of gelatinous solution within which are dispersed dissolved silver ions present as their nitrate salt. Spinning takes place at 200 Celsius with a rotation rate of 2000 revolutions per minute. They used atomic force microscopy to demonstrate how a substantial coating could be formed on glass and then successfully tested its activity against various food-poisoning bacteria. The resulting coated glass is more than 90 percent as transparent as uncoated glass bending strength tests show it to be slightly toughened by the presence of the silver coating.

"There are lots of bacteria that can cause serious food poisoning in the military equipment and environments," Choi explains. "So, the antimicrobial activity of the silver ion containing film showed its potential for use as a coating for medical devices and military equipment." The team suggests that the same approach could be used to spin coat other smooth materials.

"Fabrication and antibacterial properties of silver-coated glass substrate against Escherichia coli, Salmonella typhimurium, and Campylobacter jejuni" in Int. J. Nanotechnol, 2013, 10, 643-652

####

For more information, please click here

Contacts:
Albert Ang

Copyright © Inderscience Publishers

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project