Home > Press > UCF Discovery Boosts Energy Storage of Supercapacitors
Abstract:
Researchers at the University of Central Florida have developed a technique to increase the energy storage capabilities of supercapacitors, essential devices for powering high-speed trains, electric cars, and the emergency doors of the Airbus A380.
The finding, which offers a solution to a problem that has plagued the growing multi-billion dollar industry, utilizes a unique three-step process to "print" large - area nanostructured electrodes, structures necessary to improve electrical conductivity and boost performance of the supercapacitor.
Jayan Thomas, an assistant professor in UCF's NanoScience Technology Center, led the project which is featured in the June edition of Advanced Materials, one of the leading peer-reviewed scientific journals covering materials science in the world. Thomas' research appears on the journal's highly-coveted frontispiece, the illustration page of the journal that precedes the title page.
Supercapacitors have been around since the 1960's. Similar to batteries, they store energy. The difference is that supercapacitors can provide higher amounts of power for shorter periods of time, making them very useful for heavy machinery and other applications that require large amounts of energy to start. However, due to their innate low energy density; supercapacitors are limited in the amount of energy that they can store.
"We had been looking at techniques to print nanostructures," said Thomas. "Using a simple spin-on nanoprinting (SNAP) technique, we can print highly-ordered nanopillars without the need for complicated development processes. By eliminating these processes, it allows multiple imprints to be made on the same substrate in close proximity."
This simplified fabrication method devised by Thomas and his team is very attractive for the next-generation of energy storage systems. "What we've found is by adding the printed ordered nanostructures to supercapacitor electrodes, we can increase their surface area many times," added Thomas. "We discovered that supercapacitors made using the SNAP technique can store much more energy than ones made without."
Thomas, who is also affiliated with the College of Optics and Photonics (CREOL), and the College of Engineering, was recently featured on American Institute of Physics' Inside Science TV for his collaborative research to develop a new material using nanotechnology that could potentially help keep pilots safe by diffusing harmful laser light.
####
About University of Central Florida
50 Years of Achievement:The University of Central Florida, the nation’s second-largest university with nearly 60,000 students, is celebrating its 50th anniversary in 2013. UCF has grown in size, quality, diversity and reputation, and today the university offers more than 200 degree programs at its main campus in Orlando and more than a dozen other locations. Known as America’s leading partnership university, UCF is an economic engine attracting and supporting industries vital to the region’s success now and into the future.
For more information, please click here
Contacts:
Barb Abney
(407) 823-5139
Copyright © University of Central Florida
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Automotive/Transportation
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Aerospace/Space
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024
Bridging light and electrons January 12th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||