Home > Press > Nanoparticles, Made to Order – Inside and Out
Abstract:
A new coating technology developed at the Massachusetts Institute of Technology (MIT), combined with a novel nanoparticle-manufacturing technology developed at the University of North Carolina at Chapel Hill, may offer scientists a way to quickly mass-produce tailored nanoparticles that are specially coated for specific medical applications. Using this new combination of the two existing technologies, scientists can produce very small, uniform particles with customized layers of material that can carry drugs or other molecules to interact with their environment, or even target specific types of cells.
"Creating highly reproducible batches of precisely engineered, coated nanoparticles is important for the safe manufacture of drugs and obtaining regulatory approval," says Paula Hammond, a member of the MIT-Harvard Center of Cancer Nanotechnology Excellence and co-leader of the team that developed this new process for manufacturing nanoparticles. "Everyone's excited about nanomedicine's potential, and there are some systems that are making it out to market, but people are also concerned about how reproducible each batch is. That's especially critical for applications such as cancer therapies," Dr. Hammond said.
"Fortunately," she added, "we have combined two technologies that are at the forefront of addressing these issues and that show great promise for the future of nanomanufacturing." Hammond and collaborator Joseph DeSimone, who heads the Carolina Center for Cancer Nanotechnology Excellence at the University of North Carolina at Chapel Hill, are the senior authors of a paper describing the technology that was published in the journal Advanced Materials.
Dr. Hammond's lab has developed various technologies for coating nanoparticle surfaces with alternating layers of drugs, RNA, proteins or other molecules of interest. Those coatings can also be designed to protect nanoparticles from being destroyed by the body's immune system before reaching their intended targets. For this study, her group used a layer-by-layer spray-based technique, which allows them to apply each thin layer in just a few seconds. While this "LbL" technique has been available for years, and is very efficient for bulk surfaces, it has suffered from many throughput challenges for nanoparticle use.
The MIT team then wedded this spray process with a nanoparticle-manufacturing technology known as the PRINT (Particle Replication In Non-wetting Templates) platform, which was developed in Dr. DeSimone lab. The PRINT platform is a continuous roll-to-roll particle-molding technology that enables the design and mass production of precisely engineered particles of controlled size, shape and chemical composition. To make particles such as the ones used in this study, a mixture of polymers and drug molecules is applied to a large roll of film that consists of a nano-sized mold containing features of the desired shape and size. The mixture fills every feature of the mold and solidifies to create billions of nanoparticles. Particles are removed from the mold using another roll of adhesive film, which can then be sprayed with layers of specialized coatings using Hammond's novel technology and separated into individual particles, a much more efficient production of LbL nanoparticles than had ever before been achieved.
"The idea was to put these two industrial-scale processes together and create a sophisticated, beautifully coated nanoparticle, in the same way that bakeries glaze your favorite donut on the conveyor belt," explained Dr. Hammond. This new process promises to yield large quantities of coated nanoparticles while dramatically reducing production time. It also allows for custom design of a wide variety of materials, both in the nanoparticle core and in the coating, for applications including electronics, drug delivery, vaccines, wound healing or imaging.
To demonstrate the potential usefulness of this technique, the researchers created particles coated with hyaluronic acid, which has been shown to target proteins, called CD44 receptors, which are found in high levels on aggressive cancer cells. They found that breast cancer cells grown in the lab engulf particles coated with layers of hyaluronic acid much more efficiently than particles without the coatings or with coatings not containing hyaluronic acid.
####
About National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580
Copyright © National Cancer Institute (NCI)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||