Home > Press > Counting on Neodymium
Using the tip of a scanning tunnelling microscope (above), which is only a few atoms in size, the researchers conducted electric current through a magnetic double-decker molecule placed on a copper layer. A neodymium atom (red) is located at the centre of the molecule. Source: Forschungszentrum Jülich |
Abstract:
Magnetic molecules are regarded as promising functional units for the future of information processing. An interdisciplinary team of researchers from Jülich and Aachen were the first to produce particularly robust magnetic molecules that enable a direct electrical readout of magnetic information. This was made possible by selecting the rare earth metal neodymium as the central building block of the molecule. The team's research findings were published online today in the renowned journal Nature Communications.
The miniaturization of processors is approaching the limits of what is physically possible. At the same time, the global energy consumption by information and communications technologies is increasing continuously, requiring new approaches to handle the growing volume of data. Magnetic molecules provide a solution to this problem. They could take the place of conventional electronic components, such as diodes or transistors. In contrast to these components, however, they can be controlled with minimal voltage - which drastically reduces energy consumption - and have much more sophisticated switching functions that depend on the magnetism of the molecules.
Magnetic molecules act as tiny magnets and are able to process information in the form of electrical signals. They always have the same number of atoms, can be designed specifically for various functions, and can be produced cost-effectively in an identical form over and over again. In order to use this ‘molecular spintronics' in technical applications, the magnetic structure of the molecules must be effectively shielded from environmental influences, but at the same time, it must be accessible to electric current.
"You could say that electric current and magnetism have to communicate with each other," says Dr. Daniel Bürgler from Forschungszentrum Jülich and the Jülich Aachen Research Alliance. The physicist's team, located in Jülich and Aachen, has produced a molecule that fulfils these requirements: "In neodymium phthalocyanine, the same electrons that give rise to magnetism are also involved in electronic transport," explains Bürgler. The researchers were able to demonstrate this by comparing simulated data to experimental values.
The metal neodymium is a rare earth metal. Molecules comprising rare earth atoms and phthalocyanines, which can be found in nature in the form of leaf pigments, are considered particularly stable and shield the magnetic state of the central rare earth atoms very effectively. However, electrical readout of the magnetic state directly from these molecules had failed in the past. Due to the electrical contacting of these molecules, the electric current was hardly influenced by the magnetic structure.
In order to identify a suitable rare earth atom, the researchers first analysed the distribution of the electrons flying about the atoms like a cloud. Only some of the electrons produce the magnetic structure. These must be situated sufficiently deep within the electron cloud to be unaffected by environmental influences. At the same time, they must not be located so deep as to prevent interaction with the electrons conducting electric current. Neodymium fulfils these requirements, because it is more lightweight than other lanthanides and its electrons are distributed within a larger cloud.
Full bibliographic information
Accessing 4f-states in single-molecule spintronics; S. Fahrendorf et al.; Nature Communications, published online 24 September 2013 DOI: 10.1038/ncomms3425.
####
About Forschungszentrum Juelich
The Future is Our Mission: this is the common denominator to which Research Centre Juelich, one of the 15 Helmholtz Research Centres in Germany, reduces its work.
For more information, please click here
Contacts:
Angela Wenzik
Forschungszentrum Jülich
+49 2461 61-6048
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Jülich Aachen Research Alliance – Fundamentals of Future Information Technology:
Peter Grünberg Institute – Electronic Properties (PGI-6):
Institute of Inorganic Chemistry – Molecular Magnetism (in German):
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||