Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene nanoribbons for 'reading' DNA: EPFL researchers improve the nanopore-based technology for detecting DNA molecules

Many efforts over last decade have been directed towards development of single molecule sequencing based on solid state nanopores. Aleksandra Radenovic and co-workers have made a device composed of a graphene nanoribbon transistor built on top of a solid state nanopore. Direct electrical readout from the graphene transistors is used to detect DNA translocation events. Nanopore, DNA and the graphene nanoribbon are shown in this schematic (which is not to scale).

Credit: EPFL
Many efforts over last decade have been directed towards development of single molecule sequencing based on solid state nanopores. Aleksandra Radenovic and co-workers have made a device composed of a graphene nanoribbon transistor built on top of a solid state nanopore. Direct electrical readout from the graphene transistors is used to detect DNA translocation events. Nanopore, DNA and the graphene nanoribbon are shown in this schematic (which is not to scale).

Credit: EPFL

Abstract:
If we wanted to count the number of people in a crowd, we could make on the fly estimates, very likely to be imprecise, or we could ask each person to pass through a turnstile. The latter resembles the model that EPFL researchers have used for creating a "DNA reader" that is able to detect the passage of individual DNA molecules through a tiny hole: a nanopore with integrated graphene transistor.

Graphene nanoribbons for 'reading' DNA: EPFL researchers improve the nanopore-based technology for detecting DNA molecules

Lausanne, Switzerland | Posted on November 18th, 2013

The DNA molecules are diluted in a solution containing ions and are driven by an electric field through a membrane with a nanopore. When the molecule goes through the orifice, it provokes a slight perturbation to the field, detectable not only by the modulations in ionic current but also by concomitant modulation in the graphene transistor current. Based on this information, it is possible to determine whether a DNA molecule has passed through the membrane or not.

This system is based on a method that has been known for over a dozen years. The original technique was not as reliable since it presented a number of shortcomings such as clogging pores and lack of precision, among others. "We thought that we would be able to solve these problems by creating a membrane as thin as possible while maintaining the orifice's strength", said Aleksandra Radenovic from the Laboratory of Nanoscale Biology at EPFL. Together with Floriano Traversi, postdoctoral student, and colleagues from the Laboratory of Nanoscale Electronics and Structures, she came across the material that turned out to be both the strongest and most resilient: graphene, which consists of a single layer of carbon molecules. The strips of graphene or nanoribbons used in the experiment were produced at EPFL, thanks to the work carried out at the Center for Micro Nanotechnology (CMI) and the Center for Electron Microscopy (CIME).

"Through an amazing coincidence, continued the researcher, the graphene layer's thickness measures 0.335 nm, which exactly fits the gap existing between two DNA bases, whereas in the materials used so far there was a 15 nm thickness." As a result, while previously it was not possible to individually analyze the passage of DNA bases through these "long" tunnels - at a molecular scale -, the new method is likely to provide a much higher precision. Eventually, it could be used for DNA sequencing.

However they are not there yet. In only 5 milliseconds, up to 50'000 DNA bases can pass through the pores. The electric output signal is not clear enough for "reading" the live sequence of the DNA strand passage. "However, the possibility of detecting the passage of DNA with graphene nanoribbons is a breakthrough as well as a significant opportunity", said Aleksandra Radenovic. She noted that, for example, the device is also able to detect the passage of other kinds of proteins and provide information on their size and/or shape.

This crucial step towards new methods of molecular analysis has received an ERC grant and is featured in an article published today in Nature Nanotechnology.

####

For more information, please click here

Contacts:
Aleksandra Radenovic

41-216-937-371

Copyright © Ecole Polytechnique Fédérale de Lausanne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project