Home > Press > Carbon nanotube sponge shows improved water clean-up
Abstract:
A carbon nanotube sponge capable of soaking up water contaminants, such as fertilisers, pesticides and pharmaceuticals, more than three times more efficiently than previous efforts has been presented in a new study published today.
The carbon nanotube (CNT) sponges, uniquely doped with sulphur, also demonstrated a high capacity to absorb oil, potentially opening up the possibility of using the material in industrial accidents and oil spill clean-ups.
The results have been published today, 17 January, in IOP Publishing's journal Nanotechnology.
CNTs are hollow cylindrical structures composed of a single sheet of carbon. Owing to their structure, CNTs have extraordinary thermal, chemical and mechanical properties that have led to an array of applications from body armour to solar panels.
They have been touted as excellent candidates for wastewater clean-up; however, problems have arisen when trying to handle the fine powders and eventually retrieve them from the water.
Lead author of the research Luca Camilli, from the University of Roma, said: "It is quite tricky using CNT powders to remove oil spilled in the ocean. They are hard to handle and can eventually get lost or dispersed in the ocean after they are released.
"However, millimetre- or centimetre-scale CNTs, as we've synthesised in this study, are much easier to handle. They float on water because of their porous structure and, once saturated with oil, can be easily removed. By simply squeezing them and releasing the oil, they can then be re-used."
In the new study, the researchers, from the University of Roma, University of Nantes and University of L'Aquila, bulked up the CNTs to the necessary size by adding sulphur during the production process--the resulting sponge had an average length of 20 mm.
The addition of sulphur caused defects to form on the surface of the CNT sponges which then enabled ferrocene, which was also added during the production process, to deposit iron into tiny capsules within the carbon shells.
The presence of iron meant the sponges could be magnetically controlled and driven without any direct contact, easing the existing problem of trying to control CNTs when added onto the water's surface.
The researchers demonstrated how the constructed CNT sponges could successfully remove a toxic organic solvent--dichlorobenzene--from water, showing that it could absorb a mass that was 3.5 times higher than previously achieved.
The CNT sponges were also shown to absorb vegetable oil up to 150 times of its initial weight and absorb engine oil to a slightly higher capacity than previous reported.
"The improved absorption properties of the sponge are down to the porous structure and the rough surface of the CNTs. Oils or solvent can easily be absorbed in the empty spaces amongst the CNTs, which is made easier by the rough surfaces," continued Camilli.
"The next stage of our research is to improve the synthesis process so that the sponges can be produced on a commercial scale. We must also study the toxicity of the sponges before any real-world applications can be realised."
####
About Institute of Physics
The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application. We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications. Go to http://www.iop.org
About IOP Publishing
IOP Publishing provides a range of journals, conference proceedings, magazines, websites, books and other services that enable researchers and research organisations to achieve the biggest impact for their work.
We combine the culture of a global learned society with highly efficient and effective publishing systems and processes. We serve researchers in the physical and related sciences in all parts of the world through our offices in the UK, US, Germany, China and Japan, and staff in many other locations including Mexico and Russia.
IOP Publishing is a wholly owned subsidiary of the Institute of Physics. The Institute is a leading international scientific society with over 55 thousand members promoting physics and bringing physicists together for the benefit of all.
Surplus generated by IOP Publishing is gift aided to the Institute to support science and scientists in both the developed and developing world.
For more information, please click here
Contacts:
Michael Bishop
01-179-301-032
Copyright © Institute of Physics
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
From 17 January, this paper can be downloaded from:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Food/Agriculture/Supplements
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||