Home > Press > MITRE-Harvard Team’s Ultra-tiny Nanocomputer May Point the Way to Further Miniaturization in Industry
Abstract:
An interdisciplinary team of scientists and engineers from The MITRE Corporation and Harvard University have taken key steps toward ultra-small electronic computer systems that push beyond the imminent end of Moore's Law, which states that the device density and overall processing power for computers will double every two to three years. In a paper that will appear next week in the Proceedings of the National Academy of Sciences, the team describes how they designed and assembled, from the bottom up, a functioning, ultra-tiny control computer that is the densest nanoelectronic system ever built.
The ultra-small, ultra-low-power control processor—termed a nanoelectronic finite-state machine or "nanoFSM"—is smaller than a human nerve cell. It is composed of hundreds of nanowire transistors, each of which is a switch about ten-thousand times thinner than a human hair. The nanowire transistors use very little power because they are "nonvolatile." That is, the switches remember whether they are on or off, even when no power is supplied to them.
In the nanoFSM, these nanoswitches are assembled and organized into circuits on several "tiles." Together, the tiles route small electronic signals around the computer, enabling it to perform calculations and process signals that could be used to control tiny systems, such as miniscule medical therapeutic devices, other tiny sensors and actuators, or even insect-sized robots.
In 2011, the MITRE-Harvard team demonstrated a single such tiny tile capable of performing simple logic operations. In their recent collaboration they combined several tiles on a single chip to produce a first-of-its-kind complex, programmable nanocomputer.
"It was a challenge to develop a system architecture and nanocircuit designs that would pack the control functions we wanted into such a very tiny system," according to Shamik Das, chief architect of the nanocomputer, who is also principal engineer and group leader of MITRE's Nanosystems Group. "Once we had those designs, though, our Harvard collaborators did a brilliant job innovating to be able to realize them."
Construction of this nanocomputer was made possible by significant advances in processes that assemble with extreme precision dense arrays of the many nanodevices required. These advances also made it possible to manufacture multiple copies of the nanoFSM, using a groundbreaking approach in which, for the first time, complex nanosystems can be economically assembled from the bottom up in close conformity to a preexisting design. Until now, this could be done using the industry's expensive, top-down lithographic manufacturing methods, but not with bottom-up assembly.
For this reason, the nanoFSM and the means by which it was made represent a step toward extending the very economically important five-decade-long trend in miniaturization according to Moore's Law, which has powered the electronics industry. Because of limitations on its conventional lithographic fabrication methods and on conventional transistors, many industry experts have suggested that the Moore's Law trend soon may come to an end. Some assert that this might occur in as little as five years and have negative economic consequences, unless there are innovations in both device and fabrication technologies, such as those demonstrated by the nanoFSM.
James Ellenbogen, chief scientist for Nanotechnology and Emerging Technologies at MITRE, said, "The nanoFSM and the new methods that were invented to build it are not the whole answer for the industry. However, I believe that they do incorporate important steps forward in two of the key areas the electronics industry has been focused upon in order to extend Moore's Law."
####
About The MITRE Corporation
The MITRE Corporation is a not-for-profit organization that operates research and development centers sponsored by the federal government. Our centers support our sponsors with scientific research and analysis, development and acquisition, and systems engineering and integration. We also have an independent research program that explores new and expanded uses of technologies to meet our sponsors’ needs. Our principal locations are in Bedford, Mass., and McLean, Va.
For more information, please click here
Contacts:
Copyright © The MITRE Corporation
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Industrial
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||