Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists Find Solution to Two Long-Standing Mysteries of Cuprate High-Temperature Superconductivity: Findings unequivocally link two "personality" changes of electrons at critical point

Disappearing stripes linked with free electron movement: Scientists used a precision microscope to simultaneously explore electrons' arrangements and movements as charge carriers called holes were added to transform a copper-oxide material from an insulator to a superconductor. With increasing hole density, the material first takes on a mysterious "pseudogap" phase that overlaps and competes with superconductivity. Region I: While still in the pseudogap phase, some electrons occupy static positions apparent as a striped pattern (top inset) while other electrons are free to move and carry current, but only in certain directions (arcs with gaps in lower inset). Region II: At a critical point of hole density, the static stripes disappear and all electrons can move freely in all directions. The point of maximal superconductivity (Max Tc) lies within this region. Finding ways to prevent the static electron arrangement may be one way to push the Max Tc to a higher temperature more suitable for real-world applications.
Disappearing stripes linked with free electron movement: Scientists used a precision microscope to simultaneously explore electrons' arrangements and movements as charge carriers called holes were added to transform a copper-oxide material from an insulator to a superconductor. With increasing hole density, the material first takes on a mysterious "pseudogap" phase that overlaps and competes with superconductivity. Region I: While still in the pseudogap phase, some electrons occupy static positions apparent as a striped pattern (top inset) while other electrons are free to move and carry current, but only in certain directions (arcs with gaps in lower inset). Region II: At a critical point of hole density, the static stripes disappear and all electrons can move freely in all directions. The point of maximal superconductivity (Max Tc) lies within this region. Finding ways to prevent the static electron arrangement may be one way to push the Max Tc to a higher temperature more suitable for real-world applications.

Abstract:
Scientists seeking to understand the intricacies of high-temperature superconductivity-the ability of certain materials to carry electrical current with no energy loss-have been particularly puzzled by a mysterious phase that emerges as charge carriers are added that appears to compete with superconductivity. It's also been a mystery why, within this "pseudogap" phase, the movement of superconducting electrons appears to be restricted to certain directions. So exploring the pseudogap and whether and how it affects the movement of electrons has been a pivotal challenge.

Scientists Find Solution to Two Long-Standing Mysteries of Cuprate High-Temperature Superconductivity: Findings unequivocally link two "personality" changes of electrons at critical point

Upton, NY | Posted on May 8th, 2014

Now, a team lead by scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Cornell University have used unique capabilities to reveal detailed characteristics of the electrons in one of these materials as it transforms from an insulator through the mysterious pseudogap phase and eventually into a full-blown superconductor. The results, described in the May 9, 2014, issue of Science, link two distinct personality changes in the material's electrons: the disappearance of a rather exotic periodic static arrangement of certain electrons within the pseudogap phase, and the sudden ability of all the material's electrons to move freely in any direction. The finding strengthens support for the idea that the periodic arrangement-variously referred to as "stripes" or "density waves"-restricts the flow of electrons and impairs maximal superconductivity in the pseudogap phase.

"This is the first time an experiment has directly linked the disappearance of the density waves and their associated nanoscale crystal distortions with the emergence of universally free-flowing electrons needed for unrestricted superconductivity," said lead author J.C. Séamus Davis, a senior physicist and Director of DOE's Center for Emergent Superconductivity at Brookhaven Lab and also a professor at both Cornell University and the St. Andrews University in Scotland. "These new measurements finally show us why, in the mysterious pseudogap state of this material, the electrons are less free to move."

That information, in turn, may help scientists engineer ways to get superconductivity flowing under more favorable conditions. Right now, even these "high-temperature" copper-oxide materials operate as superconductors only when cooled to below -100 degrees Celsius. "That's room temperature during a particularly bad winter in Antarctica," Davis said. The hope is to find ways to raise the operating temperature for real-world energy-saving applications-things like highly efficient power generation and transmission and computers that work at speeds thousands of times faster than today's.

Unique tool tracks electronic states

In their native state, even at super chilly temperatures, the copper-oxide materials are actually strong insulators. To induce them to superconduct, the scientists chemically inject additional electronic carriers, a process called doping. But tracking how this process alters the electronic structure and associated nanoscale distortions as the material transforms from insulator to pseudogap phase and eventually full-blown superconductivity is no easy task.

"The crystal distortions appear in our experiments like the ghostly, smeary shadows that a moving person makes in a long photographic exposure, making it difficult to really recognize their features and their character, or even see them at all in many cases," said Simon Billinge, a Brookhaven physicist who heads a team exploring the role of such nanoscale fluctuations in superconductors and other complex materials. "We are only now developing tools and methods to see and track these subtle effects."

To capture the elusive electronic behavior, Chung-Koo Kim, a postdoctoral fellow in Billinge's group, and Kazuhiro Fujita, a Research Associate in Davis' Group, worked with Davis using a spectroscopic imaging scanning tunneling microscope invented by the latter. This tool allows the scientists to simultaneously visualize the spatial arrangements of individual static electrons and the direction of travel of those that are free to move. They systematically scanned the copper-oxide material under various levels of doping to see how the arrangements and behavior of the electrons changed as the material evolved.

Davis likens the technique to flying over a frozen river where you can see static patterns formed by the ice while also detecting flowing liquid water-and doing it over and over through the spring as the frozen waterway gradually melts. In the copper-oxide material, instead of raising the temperature, the scientists raise the level of doping to "melt" the density waves at a particular "critical point."

"This was a massive effort, taking many person-years, making long and difficult measurements on multiple samples to track the evolution of these two effects," Davis said.

Evidence of electron personality change

At low charge carrier density, the microscopic flyovers revealed somewhat static, ordered electrons-the "frozen" stripe patterns-and the flow of superconducting electrons limited to only certain directions. But subsequent scans taken as more charge carriers were added revealed that the static pattern disappeared and electrons began to flow freely in all directions at exactly the same level of doping-close to the point at which the most robust superconductivity sets in.

"This is the first direct observation that these two phenomena are linked: The density waves with their associated nanoscale distortions disappear and the electrons in the material change their personality suddenly at a well-defined material composition," Billinge said.

This direct observation confirms a long-held suspicion that the static electron arrangement and associated nanoscale fluctuations impair the free flow of electrons-like ice on a river impairs the flow of liquid water, Davis said. By analogy, adding charge carriers breaks up the static pattern, like melting the ice.

"We are demonstrating that when the electrons are no longer hampered by the 'frozen' density wave state, they become universally free to flow unimpeded," Davis said.

Another way to look at it, Billinge said, is by thinking of a chess game with kings, bishops, and knights filling the board so none can move. As you gradually remove some of the pieces-analogous to doping with charge carriers called "holes," which is what the scientists did-some of the pieces would be free to move according to their usual rules. More holes would allow more movement. But what the scientists observed instead is that at low "hole" concentration, certain kinds of movement (say, the kings' forward and sideways movements) were prohibited and that the chessboard itself appeared to have a different kind of pattern-stripes instead of alternating squares. But at the critical hole concentration-precisely 20 percent-the researchers found that both the quantum rules-of-the-game and the board itself changed, allowing the free movement of all pieces.

Of course, freeing electrons in a copper-oxide insulator to get superconducting current flowing for useful applications won't be quite as easy as melting ice to get liquid water or removing pieces from a chessboard. But it does offer clues.

"What this discovery implies is that if you prevented the static stripes from ever occurring, you might end up with a material that could act as a superconductor at a lower density of doping-and a much higher temperature," Davis said.

This research was supported by the DOE Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh
(631) 344-8350


Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Superconductivity

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project