Home > News > Iranian researchers produced a new nanodrug as contrast-increasing agent for target-imaging of breast cancer
May 8th, 2014
Iranian researchers produced a new nanodrug as contrast-increasing agent for target-imaging of breast cancer
Abstract:
Iranian researchers from Gilan University and Islamic Azad University, Zanjan Branch, produced a new nanodrug as contrast-increasing agent for target-imaging of breast cancer.
Story:
The nanodrug enables early diagnosis of breast cancer tissue and the treatment of the disease.
The nanodrug has high efficiency and it possesses noticeable optical stability in blood. The results showed that the nanodrug is nontoxic on cell cultivation conditions. Results of the research have proved the high potential of the product at animal model level.
According to the results obtained in this research, the produced nanodrug is very powerful in targeting breast cancer cells. The drug is highly absorbed by cancer cells, and the rate of absorption increases as time goes on. It can be concluded from life distribution results that the compound has the power to target breast cancer cells on in vivo conditions, and it can be used as a targeting nanodrug in imaging of breast cancer.
Gold nanorods have very high absorbance, and their sorption spectrum is adjustable at any wavelength inside the infrared domain. On the other hand, radiation of infrared does not harm healthy tissues. When gold nanorods receive the beam inside the tissues, they effectively convert the beam into heat, and miniature explosions begin. Therefore, they act as distinguishing agent in photo-acoustic imaging.
Results of the research have been published in Journal of Photochemistry and Photobiology B: Biology, vol. 130, issue 1, January 2014, pp. 40-46.
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||