Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > BASF again leading in research and innovation

 Nanoporous insulation material

Slentite™ is BASF’s first high-performance insulation panel based on polyurethane, which needs only half the space compared to traditional materials while offering the same insulation performance. Up to 90% of the volume of the organic aerogel consists of air-filled pores which have a diameter of only 50 to 100 nanometers. As a result, the air molecules’ freedom of movement is limited and the transfer of heat is reduced. The high-performance insulation material can be used, for example, in the construction sector for old and new buildings. Magnification 8000:1 (15 cm in width).
Nanoporous insulation material Slentite™ is BASF’s first high-performance insulation panel based on polyurethane, which needs only half the space compared to traditional materials while offering the same insulation performance. Up to 90% of the volume of the organic aerogel consists of air-filled pores which have a diameter of only 50 to 100 nanometers. As a result, the air molecules’ freedom of movement is limited and the transfer of heat is reduced. The high-performance insulation material can be used, for example, in the construction sector for old and new buildings. Magnification 8000:1 (15 cm in width).

Abstract:

• Around €8 billion sales in 2013 with products on the market for less than five years
• Research in North America and Asia expanded
• Nanotechnology as innovation driver in numerous applications

BASF again leading in research and innovation

Ludwigshafen, Germany | Posted on May 27th, 2014

BASF increased spending on research and development to €1.8 billion (2012: €1.7 billion) in 2013. "In absolute terms, we lead the field in the chemical industry with our research and development expenditures," said Dr. Andreas Kreimeyer, member of the Board of Executive Directors of BASF SE and Research Executive Director, at the Research Press Conference on the topic "Nanotechnology: Small dimensions - great opportunities" in Ludwigshafen.

BASF has a workforce of around 10,650 employees working in international and interdisciplinary teams on around 3,000 research projects to find answers to the challenges of the future and secure sustainable profitable growth for the company.

The innovative strength of BASF is demonstrated once more by sales of new products introduced onto the market within the past five years: Last year these amounted to about €8 billion. In 2013 alone, the company launched more than 300 new products on the market. The patent portfolio also reflects the success of the company's research activities. With 1,300 patents filed last year and about 151,000 registrations and intellectual property rights worldwide, BASF is at the top of the Patent Asset Index for the fifth time in succession.

New research laboratories in North America and Asia

In future, BASF is expecting strong impulses from the regions for its innovation pipeline. By 2020, 50% of its research activities are to be conducted outside Europe. In 2013, BASF came another step closer to this goal and increased the proportion of its research outside Europe to 28% (2012: 27%). To drive the globalization of research further forward, the company has, among other things, established six new laboratories at different locations in Asia and the United States. Moreover, for example in cooperation with highly innovative universities, BASF has founded the "California Research Alliance by BASF" (CARA) in California. Here, the main research focus is on the biosciences and new inorganic materials for the areas energy, electronics and renewable resources. In Asia, the company has, for example, joined forces with top-ranking universities from China, Japan and Korea to found the research initiative "Network for Advanced Materials Open Research" (NAO). In this joint project, research is underway on materials for a wide range of applications, including products for the automotive, construction and water industries and for the wind energy sector.

BASF collaborates in a global network with more than 600 outstanding universities, research institutes and companies. "Interdisciplinary and international cooperations are a decisive element of BASF's Know-how Verbund," added Kreimeyer. Offering intelligent solutions for the challenges of the future based on new systems and functional materials requires not only interdisciplinary approaches but also the use of cross-sectional technologies like nanotechnology.

Nanotechnology - helping to develop solutions for the future

Nanotechnology is concerned with the development, manufacture and use of materials that have structures, particles, fibers or platelets smaller than 100 nanometers and so possess novel properties. Many innovations in areas such as automotive technology, energy, electronics or construction and medicine would not be possible without nanotechnology. BASF uses this technology to develop new solutions and improve existing products.

High-performance insulation materials

Nanopores provide the specific material characteristics in one of BASF's new high-performance insulation material. Slentite™ is the first high-performance insulation panel based on polyurethane, which needs only half the space compared to traditional materials while offering the same insulation performance. Up to 90% of the volume of the organic aerogel consists of air-filled pores which have a diameter of only 50 to 100 nanometers. As a result, the air molecules' freedom of movement is limited and the transfer of heat is reduced. The high-performance insulation material can be used, for example, in the construction sector for old and new buildings.

Microencapsulation

One BASF research field in which nanotechnology plays a key role focuses on the development of formulations of active components, especially on microencapsulation. Active substances are thereby enclosed with a wax, polymer or oil-based protective shell. This enables the actives to be used more specifically for the application concerned and function more effectively. The important factor here is the controlled release of the actives. Researchers at BASF have succeeded in designing the shell according to the application need, making it only a few nanometers thick or nanostructured. This allows control of the time and speed at which the active substances can be released at the desired target location.

Graphene

A material that could contribute to the key technological progress of Organic Light Emitting Diodes (OLEDs), displays and even batteries and catalysts is graphene. It is closely related to graphite, which is used, for example, in pencil leads. Unlike graphite, graphene consists of only one layer of carbon atoms, making it less than one nanometer thin. This material is a very efficient electricity and heat conductor and is very stable but also elastic and flexible. Because it is so thin, the actually black material appears transparent. An international team of researchers is currently exploring the scientific basis and application potential of innovative carbon-based materials like graphene at the joint research and development platform of BASF and the Max Planck Institute for Polymer Research in Mainz, Germany.

Color filters

BASF's new red color, Irgaphor® Red S 3621 CF, ensures an excellent image quality of liquid crystal displays (LCD). It is used in color filters for notebook, computer and television screens. The smaller the particles are, the more intense the brightness of screens becomes. BASF has succeeded in manufacturing its product with a particle size of less than 40 nanometers. The tiny particles enable considerably less scattering of light in the color filter. Compared to traditional color products, BASF's new red doubles the contrast ratio of displays. This leads to a sharp, pure-colored, high-contrast and thus brilliant image.

Safely utilizing the potentials of nanotechnology

Accessing new technologies requires an objective assessment of both the opportunities and risks. In addition to the manufacture and development of nanomaterials, another research priority is the risk assessment of nanoparticles. For about ten years, BASF has therefore been pursuing safety research with nanomaterials. During this time the company has conducted more than 150 own toxicology and ecotoxicology studies and participated in approximately 30 different projects with external partners.

Open dialog for a common understanding

Innovation-friendly social and political conditions are decisive in allowing the potentials of nanotechnology to be utilized. "Public discussion is very important for us. We actively seek dialog, also with critical opinion leaders," said Kreimeyer. For example, BASF has - as the first and so far only company in Germany - established a regularly held dialog forum focusing on nanotechnology. At these events, BASF employees conduct discussions with various representatives of environmental and consumer organizations, labor unions, scientific institutions and churches to improve understanding of current concerns, explain opportunities, answer questions and jointly identify constructive solutions.

####

About BASF
BASF is the world’s leading chemical company: The Chemical Company. Its portfolio ranges from chemicals, plastics, performance products and crop protection products to oil and gas. We combine economic success with environmental protection and social responsibility. Through science and innovation, we enable our customers in nearly every industry to meet the current and future needs of society. Our products and solutions contribute to conserving resources, ensuring nutrition and improving quality of life. We have summed up this contribution in our corporate purpose: We create chemistry for a sustainable future. BASF had sales of about €74 billion in 2013 and over 112,000 employees as of the end of the year. BASF shares are traded on the stock exchanges in Frankfurt (BAS), London (BFA) and Zurich (AN).

For more information, please click here

Contacts:
Birgit Lau
Senior Manager Corporate Media Relations
Phone: +49 621 60-20732
Mobile: +49 1520 9375117
Fax: +49 621 60-92693

Postal Address:
BASF SE, ZOA/CM - C100
67056 Ludwigshafen, Germany

Copyright © BASF

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Safety-Nanoparticles/Risk management

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project