Home > Press > Production of Anticorrosive Chromate Nanocoatings in Iran
Abstract:
Researchers from University of Tehran proposed biocompatible anticorrosive coatings with nanometric thickness to increase corrosion resistance in metallic structures in various fields, including petroleum, gas, petrochemical, automobile fabrication and marine industries.
Chromate coatings are highly toxic despite their desirable anticorrosive performance and provision of good cohesion for the next coating. Therefore, many studies have so far been carried out on the finding of a biocompatible replacement. One of the proposals is the use of silane based coatings that is placed on the metallic substrate as lining. The aim of the research was to improve the protective performance of silane coating as a lining coating.
The produced coating provides desirable resistance against corrosion and increases cohesion for the next coating (such as paint). Therefore, it can be used in various industries for the production of structures and increasing their lifetimes. For instance, mention can be made of application of the coating in automobile fabrication industries, piers, and petroleum and gas industries that deal with oil and gas pipelines.
According to Najmeh Assadi, one of the researchers, the project has the potential to be commercialized because the coating has been carried out through the simple sol-gel method and it is a biocompatible coating.
Despite its very thin thickness at about 250 nm, the coating is able to act as a physical block against aggressive agents and their movement to the metallic substrate. On the other hand, the properties have been improved due to the addition of clay sheet-like nanoparticles to the coating.
Results of the research have been published in Journal of Sol-Gel Science and Technology, vol. 70, issue 3, 2014, pp. 329-338.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Automotive/Transportation
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||