Home > Press > Polymeric Scaffold Recreates Bladder Tissue
Abstract:
Iranian researchers from Isfahan University of Technology in association with researchers from Sweden studied the application of polymeric scaffolds to recreate bladder tissue.
The scaffolds have desirable mechanical and biological properties at the same time, and due to the existence of the bladder tissue at tiny scale instead of cell, they do not require cell extraction or culture.
The common method for recreation of bladder tissue is to use a part of the patient's intestine as the bladder. This method does not require drugs to weaken body immunity system. However, it is not appropriate for bladder tissue due to sorption ability of the internal wall of intestine because of the presence of toxic materials in urinate, and it causes serious problems. Therefore, it is essential to employ tissue engineering scaffolds.
The method presented in this research includes the application of grinded tissue of the internal wall of bladder. The lack of the need for cell extraction in laboratory reduces the cost but increases the rate of the preparation of the scaffold to be cultured in the body of the living creatures. To this end, a scaffold with hybrid structure has been made of collagen natural polymer and poly (lactic-co-glycolic acid) (PLGA) artificial polymer to prepare an appropriate media for cellular culture and to obtain desirable mechanical properties, respectively.
According to Fatemeh Ajal Loo'iyan, one of the researchers, the culturing of cells obtained from the internal and external walls is used in the surfaces of the polymeric scaffold in usual methods for bladder tissue engineering. In these methods, extraction process and cell culturing and proliferation are very expensive and time-consuming no matter what type of scaffold is used or what probable structural or biomechanical problems may occur. In addition, the patient should be operated twice.
Results of the research have been published in Biomaterials, vol. 35, issue 22, 2014, pp. 5741-5748.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||