Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Molecular beacons shine light on how cells 'crawl'

"Our premise is that mechanics play a role in almost all biological processes, and with these DNA-based tension probes we’re going to uncover, measure and map those forces,” says biomolecular chemist Khalid Salaita. Graphic by Victor Ma.
"Our premise is that mechanics play a role in almost all biological processes, and with these DNA-based tension probes we’re going to uncover, measure and map those forces,” says biomolecular chemist Khalid Salaita.

Graphic by Victor Ma.

Abstract:
By Carol Clark

Adherent cells, the kind that form the architecture of all multi-cellular organisms, are mechanically engineered with precise forces that allow them to move around and stick to things. Proteins called integrin receptors act like little hands and feet to pull these cells across a surface or to anchor them in place. When groups of these cells are put into a petri dish with a variety of substrates they can sense the differences in the surfaces and they will "crawl" toward the stiffest one they can find.

Molecular beacons shine light on how cells 'crawl'

Atlanta, GA | Posted on October 27th, 2014

Now chemists have devised a method using DNA-based tension probes to zoom in at the molecular level and measure and map these phenomena: How cells mechanically sense their environments, migrate and adhere to things.

Nature Communications published the research, led by the lab of Khalid Salaita, assistant professor of biomolecular chemistry at Emory University. Co-authors include mechanical and biological engineers from Georgia Tech.

Using their new method, the researchers showed how the forces applied by fibroblast cells are actually distributed at the individual molecule level. "We found that each of the integrin receptors on the perimeter of cells is basically ‘feeling' the mechanics of its environment," Salaita says. "If the surface they feel is softer, they will unbind from it and if it's more rigid, they will bind. They like to plant their stakes in firm ground."

Each cell has thousands of these integrin receptors that span the cellular membrane. Cell biologists have long been focused on the chemical aspects of how integrin receptors sense the environment and interact with it, while the understanding of the mechanical aspects lagged. Cellular mechanics is a relatively new but growing field, which also involves biophysicists, engineers, chemists and other specialists.

"Lots of good and bad things that happen in the body are mediated by these integrin receptors, everything from wound healing to metastatic cancer, so it's important to get a more complete picture of how these mechanisms work," Salaita says.

The Salaita lab previously developed a fluorescent-sensor technique to visualize and measure mechanical forces on the surface of a cell using flexible polymers that act like tiny springs. These springs are chemically modified at both ends. One end gets a fluorescence-based turn-on sensor that will bind to an integrin receptor on the cell surface. The other end is chemically anchored to a microscope slide and a molecule that quenches fluorescence. As force is applied to the polymer spring, it extends. The distance from the quencher increases and the fluorescent signal turns on and grows brighter. Measuring the amount of fluorescent light emitted determines the amount of force being exerted. (Watch a video of the flexible polymer technique.)

Yun Zhang, a co-author of the Nature Communications paper and a graduate student in the Salaita lab, had the idea of using DNA molecular beacons instead of flexible polymers. "She was new to the lab and brought a fresh perspective," Salaita says.

The molecular beacons are short pieces of lab-synthesized DNA, each consisting of about 20 base pairs, used in clinical diagnostics and research. The beacons are called DNA hairpins because of their shape.

The thermodynamics of DNA, its double-strand helix structure and the energy needed for it to fold are well understood, making the DNA hairpins more refined instruments for measuring force. Another key advantage is the fact that their ends are consistently the same distance apart, Salaita says, unlike the random coils of flexible polymers.

In experiments, the DNA hairpins turned out to operate more like a toggle switch than a dimmer switch. "The polymer-based tension probes gradually unwind and become brighter as more force is applied," Salaita says. "In contrast, DNA hairpins don't budge until you apply a certain amount of force. And once that force is applied, they start unzipping and just keep unraveling."

In addition, the researchers were able to calibrate the force constant of the DNA hairpins, making them highly tunable, digital instruments for calculating the amount of force applied by a molecule, down to the piconewton level.

"The force of gravity on an apple is about one newton, so we're talking about a million-millionth of that," Salaita says. "It's sort of mind-bogging that that's how little force you need to unfold a piece of DNA."

The result is a tension probe that is three times more sensitive than the polymer probes.

In a separate paper, published in Nano Letters, the Salaita lab used the DNA-based probes to experiment with how the density of a substrate affects the force applied.

"Intuitively you might think that a less dense environment, offering fewer anchoring points, would result in more force per anchor," Salaita said. "We found that it's actually the opposite: You're going to see less force per anchor." The mechanism of sensing ligand spacing and adhering to a substrate appears to be force-mediated, he says. "The integrin receptors need to be closely spaced in order for the engine in the cell that generates force to engage with them and commit the force."

Now the researchers are using the DNA-based tools they've developed to study the forces of more sensitive cellular pathways and receptors.

"Integrin receptors are kind of beasts, they apply relatively high forces in order to adhere to the extracellular matrix," Salaita says. "There are lots of different cell receptors that apply much weaker forces."

T cells, for example, are white blood cells whose receptors are focused not on adhesion but on activities like distinguishing a friendly self-peptide from a foreign bacterial peptide.

The Salaita lab is collaborating with medical researchers across Emory to understand the role of cellular mechanics in the immune system, blood clotting and neural patterning of axons. "Basically, our premise is that mechanics play a role in almost all biological processes, and with these DNA-based tension probes we're going to uncover, measure and map those forces," Salaita says.

####

For more information, please click here

Contacts:
Megan McRainey

404-727-6171

Copyright © Emory Health Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project