Home > Press > Atmospheric carbon dioxide used for energy storage products
Nanoporous graphene |
Abstract:
Researchers have discovered a fascinating new way to take some of the atmospheric carbon dioxide that's causing the greenhouse effect and use it to make an advanced, high-value material for use in energy storage products.
Chemists and engineers at Oregon State University have discovered a fascinating new way to take some of the atmospheric carbon dioxide that's causing the greenhouse effect and use it to make an advanced, high-value material for use in energy storage products.
This innovation in nanotechnology won't soak up enough carbon to solve global warming, researchers say. However, it will provide an environmentally friendly, low-cost way to make nanoporous graphene for use in "supercapacitors" - devices that can store energy and release it rapidly.
Such devices are used in everything from heavy industry to consumer electronics.
The findings were just published in Nano Energy by scientists from the OSU College of Science, OSU College of Engineering, Argonne National Laboratory, the University of South Florida and the National Energy Technology Laboratory in Albany, Ore. The work was supported by OSU.
In the chemical reaction that was developed, the end result is nanoporous graphene, a form of carbon that's ordered in its atomic and crystalline structure. It has an enormous specific surface area of about 1,900 square meters per gram of material. Because of that, it has an electrical conductivity at least 10 times higher than the activated carbon now used to make commercial supercapacitors.
"There are other ways to fabricate nanoporous graphene, but this approach is faster, has little environmental impact and costs less," said Xiulei (David) Ji, an OSU assistant professor of chemistry in the OSU College of Science and lead author on the study. "The product exhibits high surface area, great conductivity and, most importantly, it has a fairly high density that is comparable to the commercial activated carbons.
"And the carbon source is carbon dioxide, which is a sustainable resource, to say the least," Ji said. "This methodology uses abundant carbon dioxide while making energy storage products of significant value."
Because the materials involved are inexpensive and the fabrication is simple, this approach has the potential to be scaled up for production at commercial levels, Ji said.
The chemical reaction outlined in this study involved a mixture of magnesium and zinc metals, a combination discovered for the first time. These are heated to a high temperature in the presence of a flow of carbon dioxide to produce a controlled "metallothermic" reaction. The reaction converted the elements into their metal oxides and nanoporous graphene, a pure form of carbon that's remarkably strong and can efficiently conduct heat and electricity. The metal oxides could later be recycled back into their metallic forms to make an industrial process more efficient.
By comparison, other methods to make nanoporous graphene often use corrosive and toxic chemicals, in systems that would be challenging to use at large commercial levels.
"Most commercial carbon supercapacitors now use activated carbon as electrodes, but their electrical conductivity is very low," Ji said. "We want fast energy storage and release that will deliver more power, and for that purpose the more conductive nanoporous graphene will work much better. This solves a major problem in creating more powerful supercapacitors."
A supercapacitor is a type of energy storage device, but it can be recharged much faster than a battery and has a great deal more power. They are mostly used in any type of device where rapid power storage and short, but powerful energy release is needed.
They are being used in consumer electronics, and have applications in heavy industry, with the ability to power anything from a crane to a forklift. A supercapacitor can capture energy that might otherwise be wasted, such as in braking operations. And their energy storage abilities may help "smooth out" the power flow from alternative energy systems, such as wind energy.
They can power a defibrillator, open the emergency slides on an aircraft and greatly improve the efficiency of hybrid electric automobiles. Nanoporous carbon materials can also adsorb gas pollutants, work as environmental filters, or be used in water treatment. The uses are expanding constantly and have been constrained mostly by their cost.
####
About Oregon State University
OSU is one of only two U.S. universities designated a land-, sea-, space- and sun-grant institution. OSU is also Oregon’s only university to hold both the Carnegie Foundation’s top designation for research institutions and its prestigious Community Engagement classification. Its more than 26,000 students come from all 50 states and more than 90 nations. OSU programs touch every county within Oregon, and its faculty teach and conduct research on issues of national and global importance.
For more information, please click here
Contacts:
Xiulei (David) Ji
541-737-6798
Copyright © Oregon State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Automotive/Transportation
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Aerospace/Space
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024
Bridging light and electrons January 12th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||