Home > Press > Tumor micro-environment is a rough neighborhood for nanoparticle cancer drugs: Researchers look at area around tumors to help personalize treatment for triple-negative breast cancer
Abstract:
Nanoparticle drugs--tiny containers packed with medicine and with the potential to be shipped straight to tumors--were thought to be a possible silver bullet against cancer. However new cancer drugs based on nanoparticles have not improved overall survival rates for cancer patients very much. Scientists at the University of North Carolina at Chapel Hill now think that failure may have less to do with the drugs and tumors than it does the tumor's immediate surroundings.
The work, published in Clinical Cancer Research, merges relatively old and new ideas in cancer treatment, on one hand underscoring the importance of personalized medicine and on the other, reinforcing a relatively new idea that the tumor microenvironment might affect the delivery of drugs to tumors - a factor that may alter drug delivery from person to person, from cancer to cancer and even from tumor to tumor.
"Tumors create bad neighborhoods," said William Zamboni, the study's senior author and an associate professor at the UNC Eshelman School of Pharmacy. "They spawn leaky, jumbled blood vessels that are like broken streets, blind alleys and busted sewers. There are vacant lots densely overgrown with collagen fibers. Immune-system cells patrolling the streets might be good guys turned bad, actually working for the tumor. And we're trying to get a large truckload of medicine through all of that."
In their work, Zamboni and colleagues from the UNC Lineberger Comprehensive Cancer Center and the UNC School of Medicine joined forces to see how much of the standard small-molecule cancer drug doxorubicin and its nanoparticle version, Doxil, actually made it into two varieties of triple-negative breast-cancer tumor models created by UNC's Chuck Perou, the May Goldman Shaw Distinguished Professor of Molecular Oncology at the UNC School of Medicine and a professor at UNC Lineberger. Triple-negative breast cancer accounts for 10 to 17 percent of cases and has a poorer prognosis than other types of breast cancer.
At first, what they saw was no surprise: significantly more of the nanodrug Doxil made it into both triple-negative breast-cancer tumors compared with the standard small-molecule doxorubicin. "That's nothing new," Zamboni said. "We've seen that for twenty years." They also saw the same amount of doxorubin in both tumors.
What did surprise them was that significantly more of the nanodrug Doxil - twice as much - was delivered to the C3-TAg triple-negative breast cancer tumor than to the T11 triple-negative breast cancer tumor.
"These tumors are subtypes of a subtype of one kind of cancer and are relatively closely related," said Zamboni. "If the differences in delivering nanoagents to these two tumors are so significant, we can only imagine what the differences might be between breast cancer and lung cancer."
Zamboni and his team suggest that better profiling of tumors and their microenvironments would allow doctors not only to better identify patients who would most benefit from nanoparticle-based cancer therapy, but also that clinicians may need to learn more about a patient's tumor before prescribing treatment with one of the newer nanoparticle drugs.
"It looks like the tumor microenvironment could play a big role in cancer treatment," said Zamboni. "It may be the factor that could point us in the right direction for personalized care not only for triple-negative breast cancer but for any type."
####
For more information, please click here
Contacts:
UNC Eshelman School of Pharmacy Contact
David Etchison
(919) 966-7744
Communications and Public Affairs Contact
Thania Benios
919-962-8596
Copyright © The University of North Carolina at Chapel Hill
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Cancer
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||