Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The path to artificial photosynthesis: HZB researchers describe efficient manganese catalyst capable of converting light to chemical energy

Artificial catalysts imitate natural photo-synthesis.
CREDIT: HZB
Artificial catalysts imitate natural photo-synthesis.

CREDIT: HZB

Abstract:
Through their work, Professor Emad Aziz, head of the HZB Institute "Methods for Material Development", Professor Leone Spiccia from Monash University and their teams have taken an important leap forward in understanding photosynthesis - the method green plants use to obtain energy - in artificial systems. Today findings of the team have been published in the journal ChemSUSChem (DOI: DOI: 10.1002/cssc.201403219) and recently in the renowned Royal Society of Chemistry's Journal of Materials Chemistry A. (DOI: 10.1039/c4ta04185b).

The path to artificial photosynthesis: HZB researchers describe efficient manganese catalyst capable of converting light to chemical energy

Berlin, Germany | Posted on January 21st, 2015

If sunlight could effortlessly be converted to chemical energy, our energy troubles would be a thing of the past. Green plants have evolved a special kind of mechanism to help them do just that: photosynthesis, the process by which plants take sunlight and, with its help, produce high-energy substances like sugar from water and carbon dioxide. But the molecules located in the so called "oxygen evolution centre" that facilitate this series of steps inside a plant cell are highly complex and sensitive. A current mission of scientists is simulating them in a laboratory setting and optimizing them for commercial energy production.

At his institute, Emad Aziz is doing research on artificial water splitting catalysts with the goal of getting them to perform at the level of the oxygen evolution center of photosynthesis. A while back, the scientists figured out what the chemical nature of these types of energy converters would need to be. Top candidates are manganese complexes embedded in a nafion matrix, a teflon-like polymer. Leone Spiccia´s lab developed and provided the samples. He says: "Under a bias, our manganese complexes produce nanoparticles of manganese oxides within nafion matrix. When exposed to light and biased simultaneously, these oxides promote water oxidation, a key and challenging reaction associated with the splitting water into oxygen and hydrogen. The hydrogen can be stored as an energy carrier."

"The next step was to figure out which of the potential manganese complexes in nafion yields the best manganese oxides," says the scientist in charge of the experiments, Munirah Khan of the Freie Universität Berlin, holder of a DAAD and HEC(Pakistan) scholarship. She studied the formation of manganese oxides and their catalytic effect using X-ray light at BESSY II, the HZB's synchrotron radiation source. In her doctorate research work, Khan used the RIXS method, which allowed her to select and further investigate the manganese species involved in catalytic processes with high precision.

Of the various manganese complexes, one in particular - designated Mn(III) by the scientists - turned out to be the one that most efficiently formed manganese oxides. "We are developing our methods to construct multi-dimension catalytic pathways for such novel materials in the energy and time scales. Our goal is to provide synthetic chemists with a full picture of the catalytic process under real test conditions in order to enhance their work on the function of these materials," says Emad Aziz, "and figure out if and under what conditions it might be used for technological application in converting light to chemical energy. If we succeed, it could mean we're well on our way towards a continuous, environmentally-friendly, and cost-effective storage form of solar energy."

####

For more information, please click here

Contacts:
Dr. Emad Aziz

49-308-062-15003

Copyright © HZB Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project