Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Transparent artificial nacre: A brick wall at the nanoscale

Structure of the nacre-mimetic material as visualized by electron microscopySource: P. Das / DWI
Structure of the nacre-mimetic material as visualized by electron microscopy

Source: P. Das / DWI

Abstract:
Natural materials have extraordinary mechanical properties, which are based on sophisticated arrangements and combinations of multiple building blocks. One key aspect of today's materials research therefore is to develop bio-inspired materials reaching to the properties of natural materials - or even exceeding those in certain functionalities. The Walther group at DWI now prepared a nacre-inspired nanocomposite that combines exceptional mechanical properties with glass-like transparency and a high gas- and fire-barrier (Nature Communications, 2015).

Transparent artificial nacre: A brick wall at the nanoscale

Aachen, Germany | Posted on January 22nd, 2015

The structure of nacre resembles a brick wall at the microscopic scale: Calcium carbonate platelets (‘bricks') alternate with soft biopolymer layers (‘mortar'). While the solid platelets serve as the load bearing and reinforcing part, energy can be dissipated into the soft polymer segments. Together, this results in a lightweight material that is considered as the gold standard of natural materials since it is both remarkably stiff and tough, a combination of features that is hard to realize in synthetic materials. Previous approaches to synthesize nacre-mimetics were not feasible on the large scale due to energy-intensive and laborious multistep procedures. Also, it was not possible to synthesize transparent nacre-mimetic films and foils.

Andreas Walther and his team decided to use synthetic nanoclays for their nacre-mimetic materials. This significantly improved the material's transparency. The Aachen-based research group also refined the underlying preparation procedure: "Mussels grow nacre in a lengthy process. For our nanocomposites, we instead apply a rapid self-assembly process," the chemist explains. First, the researchers coat the clays with a layer of polyvinylalcohol (‘mortar on the brick') and subsequently, these core/shell particles self-assemble into a thin film upon water removal. The whole procedure takes less then 24 hours.

To learn more about how the dimensions of the nanoclays influence the characteristics of the resulting nano-composite, Walther and colleagues compared nanoplatelets of different size. "The nacre-mimetics based on small clays are very tough. However, if we use large clays with an aspect ratio of 3500, the resulting nacre-mimetics are both extremely stiff and strong. Their mechanical properties actually reach close to those of fiber composites, which are far more laborious to prepare," says PhD student Paramita Das. The glass-like transparency and the high gas barrier of the nanocomposite are an extra benefit of the material.

This outstanding combination of features makes the nacre-mimetic material a promising candidate for future applications, not only as a structural material, but also for gas storage applications and food packaging. In addition, it may be used as an advanced substrate and for encapsulation of oxygen-sensitive organic electronics in flexible displays.

Full bibliographic information
P. Das, J.-M. Malho, K. Rahimi, F. H. Schacher, B. Wang, D. E. Demco, A. Walther; Nacre-Mimetics with Synthetic Nanoclays up to Ultrahigh Aspect Ratios; Nature Communications 6 (2015), doi: NCOMMS6967

####

For more information, please click here

Contacts:
Janine Hillmer

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Flexible Electronics

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Food/Agriculture/Supplements

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Construction

Temperature-sensing building material changes color to save energy January 27th, 2023

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project