Home > Press > Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices
Abstract:
Since the discovery of graphene about a decade ago, scientists have been studying ways to engineer electronic band gaps in the material to produce semiconductors which can create new electronic devices. A team of researchers from Yale-NUS College, the Center for Advanced 2D Materials and Department of Physics at the National University of Singapore (NUS) and the University of Texas at Austin, USA (UT Austin) have established a theoretical framework to understand the elastic and electronic properties of graphene. The findings were published in February 2015 in Nature Communications, one of the most prestigious research journals in the world.
Graphene, a single-atom-thick sheet of carbon atoms arranged in a honeycomb-like lattice, is one of the simplest materials with unrivalled mechanical and electronic properties. The material has been hailed by scientists as an extremely good conductor of electrons due to its strength and its light weight. In 2013, researchers from the Massachusetts Institute of Technology (MIT) discovered that placing graphene on top of hexagonal boron nitride, another one-atom-thick material with similar properties will create a hybrid material that shares graphene's amazing ability to conduct electrons, while adding the band gap necessary to form transistors and other semiconductor devices. Semiconductors, which can switch between conducting and insulating states, are the basis for modern electronics. The reasons behind why the hybrid material performed as such were unexplained until this new theoretical framework was created by researchers from Yale-NUS, NUS and UT Austin.
To fully harness the hybrid material's properties for the creation of viable semiconductors, a robust band gap without any degradation in the electronic properties is a necessary requirement. The researchers concluded that it is necessary to use a theoretical framework that treats electronic and mechanical properties equally in order to make reliable predictions for these new hybrid materials.
Shaffique Adam, Assistant Professor at Yale-NUS College and NUS Department of Physics, said," This theoretical framework is the first of its kind and can be generally applied to various two dimensional materials. Prior to our work, it was commonly assumed that when one 2D material is placed on top of another, they each remain planar and rigid. Our work showed that their electronic coupling induces significant mechanical strain, stretching and shrinking bonds in three dimensions, and that these distortions change the electronic properties. We find that the band gap depends on several factors including the angle between the two sheets and their mechanical stiffness. Going forward, we will continue to theoretically explore the optimal parameters to create larger bandgaps that can be used for a wide range of technologies. "
Pablo Jarillo-Herrero, the Mitsui Career Development Associate Professor of Physics at MIT, whose research team first reported band gaps in this new graphene hybrid material said, "This theory work has increased the accuracy and predictability of calculating the induced band gap in graphene, which may enable applications of graphene in digital electronics and optoelectronics. If we are able to increase the magnitude of the band gap through new research, this could pave the way to novel flexible and wearable nanoelectronic and optoelectronic devices."
###
The research work in Singapore was funded by the National Research Foundation and the Ministry of Education.
####
For more information, please click here
Contacts:
Ng Tse Wei
65-660-13135
Copyright © National University of Singapore
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Flexible Electronics
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||