Home > Press > Self-assembling biomaterial forms nanostructure templates for human tissue formation
Tissue Engineering is an authoritative peer-reviewed journal published monthly online and in print in three parts: Part A, the flagship journal published 24 times per year; Part B: Reviews, published bimonthly, and Part C: Methods, published 12 times per year. Led by Co-Editors-In-Chief Antonios Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX, and Peter C. Johnson, MD, Vice President, Research and Development and Medical Affairs, Vancive Medical Technologies, an Avery Dennison business, and President and CEO, Scintellix, LLC, Raleigh, NC, the Journal brings together scientific and medical experts in the fields of biomedical engineering, material science, molecular and cellular biology, and genetic engineering. Tissue Engineering is the official journal of the Tissue Engineering & Regenerative Medicine International Society. CREDIT: ©Mary Ann Liebert, Inc., Publishers |
Abstract:
Unlike scaffold-based methods to engineer human tissues for regenerative medicine applications, an innovative synthetic material with the ability to self-assemble into nanostructures to support tissue growth and ultimately degrade offers a promising new approach to deliver cell and tissue therapies. The unique properties of this biofunctional coating that enable it to stimulate and direct the formation of complex tissues are described in an article in Tissue Engineering, Part A, a peer-reviewed journal from Mary Ann Liebert, Inc., Publishers . The article is available free on the Tissue Engineering website.
In "New Self-Assembling Multifunctional Templates for the Biofabrication and Controlled Self-Release of Cultured Tissue ", Ricardo Gouveia, Valeria Castelletto, Ian Hamley and Che Connon, University of Reading Whiteknights Campus, Reading, and Newcastle University, Newcastle upon Tyne, U.K., discuss how a novel synthetic material comprised of peptide amphiphile molecules is able to form a bioactive coating that interacts with cells in the surrounding environment and initiates a signaling cascade resulting in the formation of complex three-dimensional tissue structures that are then released from the coating.
"This article describes investigations towards the development of innovative biomaterials able to direct the formation of complex tissues as well as their release from the biomaterial template with enormous implications in tissue engineering and regenerative medicine," says Co-Editor-in-Chief Antonios Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX.
####
About Mary Ann Liebert, Inc./Genetic Engineering News
Mary Ann Liebert, Inc., Publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Stem Cells and Development, Human Gene Therapy, and Advances in Wound Care. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., Publishers website.
About the Journal
Tissue Engineering is an authoritative peer-reviewed journal published monthly online and in print in three parts: Part A, the flagship journal published 24 times per year; Part B: Reviews, published bimonthly, and Part C: Methods, published 12 times per year. Led by Co-Editors-In-Chief Antonios Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX, and Peter C. Johnson, MD, Vice President, Research and Development and Medical Affairs, Vancive Medical Technologies, an Avery Dennison business, and President and CEO, Scintellix, LLC, Raleigh, NC, the Journal brings together scientific and medical experts in the fields of biomedical engineering, material science, molecular and cellular biology, and genetic engineering. Tissue Engineering is the official journal of the Tissue Engineering & Regenerative Medicine International Society (TERMIS). Complete tables of content and sample issues may be viewed online at the Tissue Engineering website.
For more information, please click here
Contacts:
Vicki Cohn
914-740-2100
Copyright © Mary Ann Liebert, Inc./Genetic Engineering News
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||