Home > Press > Super graphene helps boost chemotherapy treatment: Replacing silver coating on catheters with graphene increases treatment effect
Elise Ramleth Østli and Ph.D. candidate Federico Mazzola of the Norwegian University of Science and Technology (NTNU) check their experiment. As part of her master's project at NTNU, Elise Ramleth Østli spent time in Stockholm, studying the tubes used with intravenous catheters. Back at NTNU, she contacted Justin Wells at the Department of Physics, asking if he was interested in continuing studies on these types of medical materials. CREDIT: Per Henning/NTNU |
Abstract:
Chemotherapy treatment usually involves the patient receiving medicine through an intravenous catheter. These catheters, as well as the the equipment attached to them, are treated with a silver coating which is antibacterial, preventing bacterial growth and unwanted infections during a treatment.
Researchers at the Norwegian University of Science and Technology's (NTNU) Department of Physics are now studying what happens when different drugs come in contact with this silver coating.
Silver breaks down chemotherapy drugs
"We wanted to find potential problem sources in the tubes used in intravenous catheters. An interaction between the coating and the drugs was one possibility. Chemotherapy drugs are active substances, so it isn't hard to imagine that the medicine could react with the silver," says Justin Wells, an associate professor of physics at NTNU.
Wells and his students used x-ray photoemission spectroscopy (XPS) to look at the surface chemistry of one of the most commonly used chemotherapy drugs, 5-Fluorouracil (5-Fu), and the interaction between it and the type of silver coating found in medical equipment.
Using an XPS instrument at the synchrotron lab MAX IV in Sweden, they found that the antibacterial silver coating actually breaks down the drugs. Not only does this reduce the effect of a chemotherapy treatment, but it also creates hydrogen fluoride, a gas that can be harmful both to the patients and to the medical equipment.
"Reactions between chemotherapy drugs and other substances that the drugs come in contact with have, as far as we know, never been studied like this before," Wells says. It has always been assumed that the drugs reach the body fully intact.
Magical material
The group continued their studies with the XPS instrument, now examining how the same chemotherapy drugs reacted with graphene.
"Graphene is a non-reactive substance, and is sometimes referred to as a magical material that can solve any problem. So we thought that it might be a good combination with the chemotherapy drugs," Wells explains.
And they were right-- the drugs did not react with the graphene.
Graphene has already been suggested as a coating for medical equipment, and according to researchers, it should be possible to create thin layers of graphene designed for this use.
"This research has produced valuable information about the interaction between chemotherapy drugs and other substances that the medicine is in contact with. We hope that our work will contribute to making cancer treatment more effective, and that we can continue our work in this area. We would like to study the reaction between chemotherapy drugs and other substances and coatings used on medical equipment," Wells concludes.
###
Reference: Graphene coatings for chemotherapy: avoiding silver-mediated degradation. Federico Mazzola, Thuat Trinh, Simon Cooil, Elise Ramleth Østli, Kristin Høydalsvik, Eirik Torbjørn Bakken Skjønsfjell, Signe Kjelstrup, Alexei Preobrajenski, Attilio A. Cafolla, D. Andrew Evans, Dag W. Breiby and Justin W.Wells. 2D Mater. 2 (2015) 025004. doi:10.1088/2053-1583/2/2/025004
####
For more information, please click here
Contacts:
Justin Wells
47-735-93428
Copyright © Norwegian University of Science and Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Cancer
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||