Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Clay sheets stack to form proton conductors: Model system demonstrates a new material property emerging from the assembly of nanoscale building blocks

This is a scanning electron microscopy image of stacked clay sheets. When two-dimensional sheets of the clay, called vermiculite, are exfoliated in water, they carry negative charges, attracting positively charged protons. After the sheets dry, they self-assemble into paper-like films. The near 1-nanometer spacing between the layers serves as the nanochannels that can concentrate protons for conduction.
CREDIT: Jiaxing Huang
This is a scanning electron microscopy image of stacked clay sheets. When two-dimensional sheets of the clay, called vermiculite, are exfoliated in water, they carry negative charges, attracting positively charged protons. After the sheets dry, they self-assemble into paper-like films. The near 1-nanometer spacing between the layers serves as the nanochannels that can concentrate protons for conduction.

CREDIT: Jiaxing Huang

Abstract:
Northwestern Engineering professor Jiaxing Huang has developed a cheaper, more stable proton-conducting system. To find the key ingredient, he had to look no further than his own backyard.

Clay sheets stack to form proton conductors: Model system demonstrates a new material property emerging from the assembly of nanoscale building blocks

Evanston, IL | Posted on July 13th, 2015

"We used a clay that you can buy at a gardening store," said Huang, associate professor of materials science and engineering at Northwestern University's McCormick School of Engineering. "I like to call it a 'down-to-earth' material."

When a proton is transported, it generates an electrical current that plays a key role in both nature and technology. Engineers are particularly interested in harnessing proton conduction for catalysis, electrochemical sensors and reactors, and harvesting energy. In fuel cells, for example, a proton must be transported across a membrane in order to reach a cathode, completing the conversion of chemical energy into electricity.

In cells, protons can be transported through nanopores formed by membrane proteins. Engineers have been trying to mimic this by creating artificial proton nanochannels. For the past 20 years, they have used nanolithography to create nanochannels in silicon, glass, and other materials to enhance ionic transport and conductivity. Those nanochannels do result in higher conductivity, but there are two major problems: nanolithography is complex and expensive, and the final material is difficult to produce on a large scale.

"Many types of nanochannels have been demonstrated on a substrate," Huang said. "But it has been difficult to produce them in large quantities, say, a substrate filled with nanochannels."

Huang's new solution capitalizes on clay's natural properties. When two-dimensional sheets of the clay, called vermiculite, are exfoliated in water, they carry negative charges, attracting positively charged protons. After the sheets dry, they self-assemble into paper-like films. The near 1-nanometer spacing between the layers serves as the nanochannels that can concentrate protons for conduction.

Supported by the Office of Naval Research and Northwestern's Materials Research Science and Engineering Center, Huang's research is described in a paper published on the July 13 in Nature Communications. Other authors of the paper include former visiting student Jiao-Jing Shao, former postdoctoral scholar Kalyan Raidonga, and graduate student Andrew Koltonow. Shao and Raidongo have completed their training at Northwestern and are now professors in China and India, respectively.

Compared to graphene-based sheets and other two-dimensional materials, clay layers have significant advantages for constructing ion conducting devices and materials. Clay is readily available and can be exfoliated in water by ionic exchange, which is much more benign than the chemical exfoliation needed for graphene and other materials. It also has extraordinary chemical and thermal stability, capable of withstanding temperatures higher than 500 degrees Celsius.

"Clay has extraordinary thermal stability," Huang said. "We want to create a proton conducting system that can sustain very high temperatures because some of the best proton-conducting materials out there can't do that."

The simplicity of the material processing techniques required to produce such 2-D nanochannels makes it easy to scale up. Therefore, instead of resulting in a small number of channels, over 30 percent of the volume of Huang's clay membrane is made of proton-conducting nanochannels.

Huang calls his clay membrane a new example of "bulk nanostructured materials," which refers to a macroscopic form of materials with structural units at nanometer scale. Bulk nanostructure materials are of great interest, partially because they have new properties that are untenable to their nanostructured units.

In this case, the individual clay sheets do not have proton-conducting properties. They need to assemble face-to-face to generate the final bulk form of material, in which all of the sheets collectively support the proton-conducting properties.

"We're studying nanomaterials beyond the individual nanostructured unit," he said. "This is a bulk material that can be readily seen, manipulated, and used."

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project