Home > Press > World first: Significant development in the understanding of macroscopic quantum behavior: Researchers from Polytechnique Montréal and Imperial College London demonstrate the wavelike quantum behavior of a polariton condensate on a macroscopic scale and at room temperature
To produce the room-temperature condensate, the team of researchers from Polytechnique and Imperial College first created a device that makes it possible for polaritons - hybrid quasi-particles that are part light and part matter - to exist. The device is composed of a film of organic molecules 100 nanometres thick, confined between two nearly perfect mirrors. The condensate is created by first exciting a sufficient number of polaritons using a laser and then observed via the blue light it emits. Its dimensions can be comparable to that of a human hair, a gigantic size on the quantum scale. CREDIT: Konstantinos Daskalakis, Imperial College London |
Abstract:
For the first time, the wavelike behaviour of a room-temperature polariton condensate has been demonstrated in the laboratory on a macroscopic length scale. This significant development in the understanding and manipulation of quantum objects is the outcome of a collaboration between Professor Stéphane Kéna-Cohen of Polytechnique Montréal, Professor Stefan Maier and research associate Konstantinos Daskalakis of Imperial College London. Their work has been published in the prestigious journal Physical Review Letters.
Quantum objects visible to the naked eye
Quantum mechanics tells us that objects exhibit not only particle-like behaviour, but also wavelike behaviour with a wavelength inversely proportional to the object's velocity. Normally, this behaviour can only be observed at atomic length scales. There is one important exception, however: with bosons, particles of a particular type that can be combined in large numbers in the same quantum state, it is possible to form macroscopic-scale quantum objects, called Bose-Einstein condensates.
These are at the root of some of quantum physics' most fascinating phenomena, such as superfluidity and superconductivity. Their scientific importance is so great that their creation, nearly 70 years after their existence was theorized, earned researchers Eric Cornell, Wolfgang Ketterle and Carl Wieman the Nobel Prize in Physics in 2001.
A trap for half-light, half-matter quasi-particles
Placing particles in the same state to obtain a condensate normally requires the temperature to be lowered to a level near absolute zero: conditions achievable only with complex laboratory techniques and expensive cryogenic equipment.
"Unlike work carried out to date, which has mainly used ultracold atomic gases, our research allows comprehensive studies of condensation to be performed in condensed matter systems under ambient conditions" explains Mr. Daskalakis. He notes that this is a key step toward carrying out physics projects that currently remain purely theoretical.
To produce the room-temperature condensate, the team of researchers from Polytechnique and Imperial College first created a device that makes it possible for polaritons - hybrid quasi-particles that are part light and part matter - to exist. The device is composed of a film of organic molecules 100 nanometres thick, confined between two nearly perfect mirrors. The condensate is created by first exciting a sufficient number of polaritons using a laser and then observed via the blue light it emits. Its dimensions can be comparable to that of a human hair, a gigantic size on the quantum scale.
"To date, the majority of polariton experiments continue to use ultra-pure crystalline semiconductors," says Professor Kéna-Cohen. "Our work demonstrates that it is possible to obtain comparable quantum behaviour using 'impure' and disordered materials such as organic molecules. This has the advantage of allowing for much simpler and lower-cost fabrication."
The size of the condensate is a limiting factor
In addition to directly observing the organic polariton condensate's wavelike behaviour, the experiment showed researchers that ultimately the condensate size could not exceed approximately 100 micrometres. Beyond this limit, the condensate begins to destroy itself, fragmenting and creating vortices.
Toward future polariton lasers and optical transistors
In a condensate, the polaritons all behave the same way, like photons in a laser. The study of room-temperature condensates paves the way for future technological breakthroughs such as polariton micro-lasers using low-cost organic materials, which are more efficient and require less activation power than conventional lasers. Powerful transistors entirely powered by light are another possible application.
The research team foresees that the next major challenge in developing such applications will be to obtain a lower particle-condensation threshold so that the external laser used for pumping could be replaced by more practical electrical pumping.
Fertile ground for studying fundamental questions
According to Professor Maier, this research is also creating a platform to facilitate the study of fundamental questions in quantum mechanics. "It is linked to many modern and fascinating aspects of many-body physics, such as Bose-Einstein condensation and superfluidity, topics that also intrigue the general public," he notes.
Professor Kéna-Cohen concludes: "One fascinating aspect, for example, is the extraordinary transition between the state of non-condensed particles and the formation of a condensate. On a small scale, the physics of this transition resemble an important step in the formation of the Universe after the Big Bang."
###
This research has received support from the Natural Sciences and Engineering Research Council of Canada (NSERC), The Leverhulme Trust, and the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom.
####
For more information, please click here
Contacts:
Annie Touchette
514-231-8133
Copyright © Polytechnique Montreal
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Also available in open-access:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Quantum nanoscience
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||