Home > Press > Imec Makes Steady Progress on Perovskite Photovoltaic Module reaching a Record 11 Percent Conversion Efficiency
Abstract:
Nano-electronics research center imec announced today at ITF US (San Francisco, July 13, 2015), a record 11.3 percent aperture and 11.9% active area efficiency for its thin-film perovskite photovoltaic (PV) module. The efficiency was measured over an aperture area of 16cm2. This achievement is the best conversion efficiency for perovskite modules in literature.
Organometal halide perovskites are considered an excellent material for thin-film solar cells as they have shown high conversion efficiencies at cell level. While the power conversion efficiency of this new class of thin film solar cells has increased rapidly in the last few years, further improvements are still needed to make thin-film photovoltaics an attractive technology for industrial production. Larger area processing and narrow interconnections are prerequisites for processing efficient thin-film modules.
Imec’s perovskite module achieves a geometrical fill factor of more than 95 percent and an aperture conversion efficiency of 11.3 percent. The active area efficiency was demonstrated with 11.9 percent. These record devices have been fabricated by the conventional lab scale spin coating process. Imec also used a linear coating technique (blade coating) for all the solution based layers, to prove industrially viable fabrication methods. By using this method, the modules achieved a 9 percent aperture area efficiency. These achievements are important breakthroughs in bringing thin-film solar technology to industrial scalability for applications such as building integrated photovoltaics (BIPV).
“Imec is steadily improving the conversion efficiencies of its perovskite solar cells and at the same time adjusting the fabrication processes to enable industrial adoption of this promising technology,” said Tom Aernouts, R&D manager for thin-film photovoltaics at imec. “Leveraging our expertise in organic photovoltaics enables us to make rapid progress in enhancing the conversion efficiencies, ultimately aiming at conversion efficiencies of more than 20 percent for this type of thin-film solar cells.”
Imec develops a platform for glass-based perovskite modules and collaborates with Solliance, a cross-border Dutch-German-Flemish thin-film PV research initiative. Thanks to its high power conversion efficiency and stand-alone integration in building elements, both glass-based and thin-film perovskite PV technology are widely considered as important technologies for the BIPV market. Moreover, imec is exploring stacking a perovskite cell on top of a silicon solar cell to increase the conversion efficiency of silicon solar cells. The perovskite cell will capture the light which is not absorbed by silicon, as such enabling conversion efficiencies of more than 30 percent.
####
About IMEC
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, USA, China, India and Japan. Its staff of about 2,200 people includes almost 700 industrial residents and guest researchers. In 2014, imec's revenue (P&L) totaled 363 million euro. Further information on imec can be found at www.imec.be. Stay up to date about what’s happening at imec with the monthly imec magazine, available for tablets and smartphones (as an app for iOS and Android), or via the website www.imec.be/imecmagazine
Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.)and imec China (IMEC Microelectronics (Shanghai) Co. Ltd.) and imec India (Imec India Private Limited).
About Solliance
Solliance is a partnership of R&D organizations from the Netherlands, Belgium and Germany working in thin film photovoltaic solar energy (TFPV). In order to strengthen the region’s position as a world player in PV, Solliance is creating the required synergy by consolidating and coordinating the activities of 250 researchers in industry, at research institutes and universities.
Various state-of-the-art laboratories and pilot production lines are jointly used for dedicated research programs which are executed in close cooperation with the solar business community.
Solliance partners are: ECN, imec, TNO, Holst Centre, TU/e, Forschungszentrum Jülich, University Hasselt and Delft University of Technology.
Solliance offers participation in its research programs and opens up its lab facilities to new entrants, either from industry or in research. On the basis of clear Intellectual Property (IP) agreements, each industrial partner can participate in this research effort, or alternatively, hire equipment and experts to further develop its own technology.
For more information, please click here
Contacts:
Stephanie Black
Business Technology
1215 Cushman Avenue
San Diego, CA 92110
Office 619-234-0345
Copyright © IMEC
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023
New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022
Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||