Home > Press > FAU researchers develop nanoparticles for biomedical applications
![]() |
Image: Panthermedia/Andriy Popov |
Abstract:
An international, interdisciplinary team of researchers is developing highly porous biomaterials for localised release of therapeutic ions and drugs in the MOZART project which has received 4.65 million euros in funding. Materials scientist Prof. Dr. Aldo R. Boccaccini is head of the team of researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), one of the project’s academic partners. MOZART is being funded by Horizon 2020, the EU Framework Programme for Research and Innovation.
The body’s powers of regeneration sometimes fail. Around 350,000 people a year suffer from broken bones that cannot heal by themselves, while around 2.2 million patients with conditions such as diabetes have to cope with chronic open wounds. MOZART (Mesoporous matrices for localized pH-triggered release of therapeutic ions and drugs) aims to help these patients. The goal of the project is to use mesoporous – i.e. highly porous – silicate nanomaterials to support bone and wound healing.
The team of FAU researchers led by Prof. Dr. Aldo R. Boccaccini, Chair of Biomaterials, are developing new inorganic and mesoporous materials whose pores are approximately ten nanometres in size and which have a unique chemical composition. ‘The pores of these bioactive particles will be enriched with active agents and are designed to release medication locally in a controlled manner, meaning that the active agent is released in the location where it is required,’ Prof. Boccaccini explains. ‘This allows doses to be reduced and side affects to be avoided.’
The overall goal of the four-year project is to develop a database of new and bioactive nanomatrices. ‘We are delighted that we are able to contribute our expertise to such an important project,’ Prof. Boccaccini says. ‘If our new and innovative developments can be used in clinical application, this will benefit patients and enrich Europe’s healthcare sector.’
The MOZART consortium consists of five high-tech SMEs and six European universities, including FAU, the Polytechnic University of Turin, Complutense University of Madrid and the University of Sheffield. The European Commission is funding the project with a total of 4.65 million euros. As an academic partner, FAU’s Institute for Biomaterials has been allocated around 382,000 euros of this funding.
####
For more information, please click here
Contacts:
Prof. Dr Aldo R. Boccaccini
Phone: +49 9131 8528601
aldo.boccaccini@ww.uni-erlangen.de
Copyright © Friedrich-Alexander-Universität
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanobiotechnology
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |