MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Converting solar energy into electric power via photobioelectrochemical cells

Novel photo-bioelectrochemical cells point to a new method to photonically drive biocatalytic fuel cells while generating electrical power from solar energy.

Image courtesy Prof. Itamar Willner
Novel photo-bioelectrochemical cells point to a new method to photonically drive biocatalytic fuel cells while generating electrical power from solar energy.

Image courtesy Prof. Itamar Willner

Abstract:
A new paradigm for the development of photo-bioelectrochemical cells has been reported in the journal Nature Energy by researchers from The Hebrew University of Jerusalem, in Israel, and the University of Bochum, in Germany.

Converting solar energy into electric power via photobioelectrochemical cells

Jerusalem, Israel | Posted on January 21st, 2016

The design of photo-bioelectrochemical cells based on native photosynthetic reaction is attracting substantial recent interest as a means for the conversion of solar light energy into electrical power.

In the natural photosynthetic apparatus, photosynthetic reaction is coupled to biocatalytic transformations leading to CO2 fixation and O2 evolution. Although significant progress has been achieved in the integration of native photosystems with electrodes for light-to-electrical energy conversion, the conjugation of the photosystems to enzymes to yield photo-bioelectrocatalytic solar cells remains a challenge.

Now, researchers report on the construction of photo-bioelectrochemical cells using the native photosynthetic reaction and the enzymes glucose oxidase or glucose dehydrogenase. The system consists of modified integrated electrodes that include the natural photosynthetic reaction center, known as photosystem I, conjugated to the enzymes glucose oxidase or glucose dehydrogenase. The native proteins are electrically wired by means of chemical electron transfer mediators. Photoirradiation of the electrodes leads to the generation of electrical power, while oxidizing the glucose substrate acting as a fuel.

The system provides a model to harness the native photosynthetic apparatus for the conversion of solar light energy into electrical power, using biomass substrates as fuels. In contrast to numerous bioelectrochemical systems using electrical power to oxidize glucose, the present study introduces the implementation of the native photosystem to produce electrical power using light as the energy source.

The novel photo-bioelectrochemical cells point to a new method to photonically drive biocatalytic fuel cells while generating electrical power from solar energy.

Prof. Itamar Willner, at the Hebrew University's Institute of Chemistry, said: "The study results provide a general approach to assemble photo-bioelectrochemical solar cells with wide implications for solar energy conversion, bioelectrocatalysis and sensing."

###

The research was headed at the Hebrew University by Prof. Itamar Willner, Institute of Chemistry and Minerva Center for Biohybrid Complex Systems, in collaboration with Prof. Rachel Nechushtai, Alexander Silberman Institute of Life Sciences and Minerva Center for Biohybrid Complex Systems; and at Ruhr-Universität Bochum, by Prof. Wolfgang Schuhmann, Analytical Chemistry, Center for Electrochemical Sciences (CES).

####

About The Hebrew University of Jerusalem
The Hebrew University of Jerusalem is Israel's leading academic and research institution, producing one-third of all civilian research in Israel.

For more information, please click here

Contacts:
Dov Smith
dovs@savion.huji.ac.il
972-258-82844

Copyright © The Hebrew University of Jerusalem

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Organic Electronics

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project